EMC入门到精通-武晔卿
创始人
2025-05-28 13:45:01
0

第一课 EMC问题简便分析方法总结

三要素:干扰源 耦合路径 敏感设备

解决方法:屏蔽 滤波 接地

1.高频特性

非金属材料(忽略)

导通金属——wL——2πfL 感抗 PCB走线电感 导线上的电感 金属螺丝接触间的接触电感

不导通金属——1/wC 容抗 两导体间的分布电容,如平行走线分布电容

2.回流路径

干扰源:du/dt di/dt

回流终点:干扰源回到干扰源本体、 干扰源-EGND/PE(机壳)

传播路径选择:低频传播路径 走线电感——导线的走线电感wL传导为主

高频传播路径 分布电容——金属体与金属体之间的分布电容1/wC耦合传播为主

3.电压容限

数字电路的电压容限,逻辑高低误判问题

模拟电路的峰峰值(如称重0.83uV/e)

着重解决EMS特性,适度波动

数字电路的噪声容限会大一些,模拟电路表现为噪声(温湿度漂移,EMS干扰,本底噪声等)

应用实例一

现象:金属外壳 有接地线缆 ESD放电到金属螺丝处

内部电路发生RST复位现象 其中绿色的为机器引出线缆

分析:干扰源 静电枪打出的静电

回路1 静电枪——上金属壳体(wl很小可以忽略,主要电感来自于金属壳体的趋肤效应)— 螺丝(此时存在接触电感,影响很大)——侧金属壳体(wl很小可以忽略)——PE线到大地(PE 线与侧金属接触电感,以及接地导线自身的引线电感) 如果总的走线电感积累过大,会导致 高频ESD干扰无法正常的导走,此时会将外壳的电势抬起,形成脉动毛刺,此时,由于外壳 与PCB板间或者导线间的分布电容,存在电容串扰发生,到达PCB或信号线缆

回路2 金属壳体(分布电容耦合)——PCB板(分布电容耦合)——外壳(分布电容耦合)——PE线到大地

经验:金属壳体之间要可靠连接(面连接)、接地线与金属外壳采用面连接、接地导线宽而扁平电缆、外壳的接地如果良好的话,即使存在一些分布电容的影响,干扰也会从低阻抗的接地泄放掉

减小壳体与PCB间的分布电容(增大导线或金属结构到PCB的间距)、线缆接口加滤波措施抑制或者旁路到外壳导走、接口采用隔离措施、复位引脚加滤波电容抑制差模干扰

应用实例二

设备描述:金属外壳 浮地系统 RE超标

干扰基波为电源的开关,电源的开关带来很强的di/dt和du/dt感染能量,能量通过

变压器原边和副边间的分布电容,传到原边LN电源线上发射出去,或电源线过长存在很大的走线电感,干扰只能从电源线耦合到其他金属走线上,其他走线形成发射天线,将能量辐射出去

分析解决:1、让干扰源干扰回到干扰源本体 2、干扰源能量直接入大地

干扰源 开关电源的开关动作

回路1 在源副边间加额外电容,让干扰能量传导到变压器原边,在原边正负到金属外壳间 加电容,让能量传导到外壳,再在外壳到逻辑地之间加电容,让干扰能量回到源头

经验:让干扰能量回到源端、让干扰能量被磁性器件消耗(共模电感、磁环)、让干扰能量很好入大地

让干扰能量耦合到屏蔽层(需要接PE)入大地

第二课 电磁兼容分析整改三要素机理

1.高速信号线上加防护、电容性器件时注意不要影响信号波形的完整性,不然波形会失真

  1. 高频特性 控制电路——电磁兼容——信号完整性——射频 研究的频率越来越高

产品的EMC特性,需要用高频的思维来考虑,走线电感和分布电容的含义需要深入脑海

高频导线

高频时,导线要看成电感和电阻的串联,且导线之间存在分布电容

趋肤效应 频率上升时,高频电流从金属导线表面通过,截面积变小,交流阻抗Rac变大

高频时,导线需看成是由直流电阻 走线电感 分布电容三部分组成

电容高频特性

阻抗频率特性 Zc=jwl+1/(jwc)+ESR

自谐振点:wl=1/wc

引线电感、电容、等效串联ESR(发热部分)、绝缘阻抗(漏电流)

电感高频特性

低频电流低阻抗路径是电感线圈本身,高频时,电感匝线之间的分布电容会成为阻抗最低的通路

回流路径

接地阻抗的特性 走线电感 分布电容

第三课 EMC信号波形抗扰设计方法分析

阶跃信号 干扰信号

上升时间tr 超调△% 振荡 单位时间热融值

设备有外壳地的时候,整机接地良好至关重要

第四课 EMC器件的选型(滤波器篇)

RC阻容滤波的频率阻抗曲线 低通滤波器,高频从电容上入地

一阶滤波可以算截止频率,进行具体设计

AD接口设置RC低通滤波电路的正确方法(AD7195)

20dB每10倍频程 电压 电流

逻辑电平不要和AC电源靠的太近,否则会由于开关干扰,导致逻辑判断异常,影响正常通讯

EFT注入信号线的干扰属于共模干扰,杂波比较多,实际中,不用计算具体频点

第五课 EMC器件的选型(分立器件篇)

  1. 电容

温度降额特性 直流偏置降额特性 ESR 频率特性曲线 绝缘阻抗 耐压 xy电容漏电流

最大纹波电流 自谐振频率 温度系数 损耗角

旁路、去耦 地隔离(频率特性曲线效应)

  1. 电感

电感值(通过特定的频率情况下测得 1uH@1kHz 1V)

电感的匝间分布电容

1MHz差模为主

1-10MHz差共模

10MHz以上共模为主

磁滞特性曲线 磁滞回线

H:磁场强度 B:磁感应强度

由于磁场H的存在,使得导磁材料里的磁稠方向极化了,形成了磁感应强度B

也就是将电场能储存在了磁场能里面,当其中所以的磁稠都极化了,到达了极限

此时就是磁饱和的状态,磁场再如何加强,磁感应强度都不变了

撤除磁场时,由于磁滞特性,有一部分能量还储存在里面Br,当Br比较高时,表现为储能特性,这就是电感能储存能量的物理解释

当Br比较小时,剩磁特别少,储能左右不明显,当在磁滞曲线上循环往复的导通时,由于储能左右不明显,磁力线能量都在磁阻上被消耗了,然后转化为热能,这时候就表现为磁珠的左右

第五课 EMC器件的选型(结构布局与材料篇)

电场干扰用高导电率材料(接地导走) du/dt 钢、铜等金属

磁场干扰用高导磁率材料(吸收) di/dt 铁镍合金(100000)、铁氧体(10000)、硅钢(7000-10000)

金属的屏蔽效能一般大于80dB

导电胶条泡棉

相关内容

热门资讯

【算法设计-搜索】回溯法应用举... 文章目录9. 全排列问题(不考虑重复数字)10. 全排列问题࿰...
字节5年经验之谈,从功能测试进... 最近收到不少小伙伴私信问,做了好几年测试,一直停留在手工测试点点点的阶段...
JDK 9 到 19 内存变化 一、前言 在 JDK 9 之前,Java 基本上平均每三年出一个版本。但是自从 201...
由《三体》太阳文明末日场景想到... 《三体》电视剧正在热播,热度持续不退,豆瓣评分8.6,基本...
Node.js核心模块 htt... 前言 http、http2模块都是node.js的核心模块,下面分别对这些模块进行分析...
(16)C#传智:线程,Soc... 一、复习     进程与线程的关系     Process.Start()p.StartInfo ...
动态规划day2345【代码随... 动态规划五部曲 1、确定dp数组以及下标含义2、确定递推公式---->状态转移方程3、dp数组如何初...
Ajax简介 Ajax简介和使用 1.简介 AJAX = Asynchronous JavaScript...
LINUX中atd和crond... 一、atd与crond的区别1、运行方式不同,at只运行一次,而cron...
平台接入qq客服 自定义dom 1.去腾讯企点注册 2.选择模式,有自带的默认格式还有自定义dom格式等 https:...
NLP:生成图像的中文摘要 Generate Image Caption   依旧采用十分熟悉的NMT架构,把生成...
Shell 传递参数 文章目录Shell 传递参数$* 与 $@ 区别 Shell 传递参数 我们可以在执行 ...
Mybatis-Plus详解0... 文章目录前言一、代码生成器1、简介2、使用步骤二、MybatisPlus常用方法1.基本的CRUD新...
使用Maven实现Servle... 创建Maven项目我们打开idea的新建项目,选中里面Maven即可,如下图:创建完成之后,会看到这...
pytorch环境之mask-... pytorch环境之mask-rcnn源码实现1.下载源码及配置环境1.1 mask-rcnn源码下...
谷粒商城十八认证服务之分布式s... 分布式下session共享问题 当我们登录成功后,会跳转到首页,之前我们...
【ROS模块】关于autowa... Installation - Autoware Documentation Architecture...
在数字化时代,企业BI的发展趋... 数据的重要程度还在不断加深,但大量的数据并不能直接产生价值,需要通过数据...
Auto-Tuning wit... 文章目录摘要一、介绍二、相关工作2.1 总账结构2.2 织物优化三、系统结构四、作为DRL问题的自动...
不一样的邂逅——初识Vue3 不一样的邂逅——初识Vue31、初识Vue32、Vue3提升了什么2.1、性能的提升2.2、源码的升...