01背包问题c++
创始人
2025-05-29 18:04:25
0

问题

问题介绍

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

讲解

首先要说明的就是,本教程只讲解一般的写法,不讲解优化方法(滚动数组降维),先把基本的思想学会了,然后再去学优化方法的。
相信大多数人刚开始学dp问题的时候碰到的就是01背包问题,dp问题首先就是先定义dp数组所代表的意义(比如说这道题,dp[i][j]所代表的就是选取前i个物品体积不会超过j的最大价值),然后就是判断每一步的状态(比如说这一题就是每一步都要判断是否选择这个物品),然后就是状态转移方程了。
回归本题目,本题的思想就是装前i个物品,然后体积一直增大,每次就是判断选不选这个物品,

  • 如果选这个物品的价值就是dp[i - 1][j - v[i]] + w[i]
    解析:选这一个那么肯定要加上这一个的价值w[i]这里应该没有问题了吧,那为什么前面是dp[i - 1][j - v[i]]呢?因为就是选了这一个物品了,这一个物品占据了v[i]的体积,那么只要找到子问题选i-1个物品,然后体积不大于j-v[i]的最优解就可以了。
  • 如果不选这个物品,就直接从前i-1个物品选体积不大于j的最优解了。
  • 每次判断一下,就是如果这个物品的体积大于现在所能装的最大的体积,那么肯定就是直接不能选择这个物品了。

图解

  • 图片中在中间价值数据中被标黄的数据就是当前物品的体积大于背包当前所能装的最大体积,所以直接就不用选这个物品,直接将上一层的数据拉下来就行了。
  • 图片可能会不好看哈,等我优化。
    01背包.png

基础源码

#include using namespace std;const int N = 1010;int n, k;
int v[N], m[N];
int dp[N][N];int main()
{cin >> n >> k;for (int i = 1; i <= n; i ++ ) cin >> v[i] >>m[i];for (int i = 1; i <= n; i ++ ){for (int j = 1; j <= k; j ++ ){if (v[i] > j){dp[i][j] = dp[i - 1][j];}else{dp[i][j] = max(dp[i - 1][j - v[i]] + m[i], dp[i - 1][j]);}}}cout << dp[n][k] << endl;}

一维数组优化

  • 来自几个小时后的我:看了一下y总的视频,突然就会了一维数组的优化方法是怎么写的了。
  • 其实如果上面那个图你从头推了一遍,你就会发现我们更新每一层的数据的时候,其实只用到了上一层的数据而且还是用到上一层数据的范围为–>从上一层起点开始到本层数据正上方的数据。比如说我们要更新第三层第4列的数据,那么其实我们用到的数据范围为,第3-1层第一列到第3-1层第4列。
  • 我们遍历j的时候要从后(最大的体积)向前遍历到v[i]
    • 为什么要从后开始遍历呢?
      因为我们每次更新要用到前面的数据,如果我们从前向后更新,当我们遍历到后边的时候要用到前面的数据但是前面的数据已经更改了,不是第i-1层的数据了,所以我们要从后向前遍历,这样就不会影响到前面的数据。
    • 为什么遍历到v[i]就可以了呢?
      因为就是j的时候肯定是不能选这个物品的,直接就是拉取正上方的数据就行,也就相当于不用更改数据。

一维数组优化后源码

#include using namespace std;const int N = 1010;int dp[N];
int v[N], w[N];int main()
{int n, m;cin >> n >> m;for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];for (int i = 1; i <= n; i ++ ){for (int j = m; j >= v[i]; j -- ){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[m] << '\n';return 0;}

相关内容

热门资讯

【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...
【2023-03-22】SRS... 【2023-03-22】SRS推流搭配FFmpeg实现目标检测 说明: 外侧测试使用SRS播放器测...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
初级算法-哈希表 主要记录算法和数据结构学习笔记,新的一年更上一层楼! 初级算法-哈希表...
进程间通信【Linux】 1. 进程间通信 1.1 什么是进程间通信 在 Linux 系统中,进程间通信...
【Docker】P3 Dock... Docker数据卷、宿主机与挂载数据卷的概念及作用挂载宿主机配置数据卷挂载操作示例一个容器挂载多个目...