【算法设计-搜索】回溯法应用举例(3)——排列组合问题
创始人
2025-05-29 20:12:56
0

文章目录

    • 9. 全排列问题(不考虑重复数字)
    • 10. 全排列问题(考虑重复数字)
    • 11. 组合问题(取出数字相同但顺序不同,视为不同组合)
    • 12. 组合问题(取出数字相同但顺序不同,视为相同组合)
    • 13. 子集问题(集合代数中的子集定义)

9. 全排列问题(不考虑重复数字)

【描述】什么是全排列?例如,给定一串数字 1,2,3,那么它们的全排列就是:

  • 1,2,3
  • 1,3,2
  • 2,1,3
  • 2,3,1
  • 3,1,2
  • 3,2,1

注意,该问题不考虑有重复数字的情况。

【算法分析】运用回溯的思想。

在这里插入图片描述

假设有三个元素,初始情况为:

i=0i=1i=2
012

注意:括号内的是元素,i=X 为下标!

  • 以 i=0 为基准,分别与后面其他元素交换,先与 i=0 交换(0 1 2)。
    • 以 i=1 为基准,分别与后面其他元素交换,先与 i=1 交换(0 1 2)。
      • 以 i=2 为基准,分别与后面其他元素交换,先与 i=2 交换(0 1 2)。
      • 此时 i=2 已经没有其他元素可以交换了,所以输出序列(0 1 2),然后把 i=2 与 i=2 换回来(0 1 2)。
    • 以 i=1 为基准,先把 i=1 与 i=1 换回来(0 1 2),然后继续与后面其他元素交换,与 i=2 交换(0 2 1)。
      • 以 i=2 为基准,分别与后面其他元素交换,先与 i=2 交换(0 2 1)。
      • 此时 i=2 已经没有其他元素可以交换了,所以输出序列(0 2 1),然后把 i=2 与 i=2 换回来(0 2 1)。
    • 此时 i=1 已经没有其他元素可以交换了,把 i=1 与 i=2 换回来(0 1 2)。
  • 以 i=0 为基准,先把 i=0 与 i=0 换回来(0 1 2),继续与后面其他元素交换,与 i=1 交换(1 0 2)。
    • 以 i=1 为基准,分别与后面其他元素交换,先与 i=1 交换(1 0 2)。
      • 以 i=2 为基准,分别与后面其他元素交换,先与 i=2 交换(1 0 2)。
      • 此时 i=2 已经没有其他元素可以交换了,所以输出序列(1 0 2),然后把 i=2 与 i=2 换回来(1 0 2)。
    • 以 i=1 为基准,先把 i=1 与 i=1 换回来(1 0 2),继续与后面其他元素交换,与 i=2 交换(1 2 0)。
      • 以 i=2 为基准,分别与后面其他元素交换,先与 i=2 交换(1 2 0)。
      • 此时 i=2 已经没有其他元素可以交换了,所以输出序列(1 2 0),然后把 i=2 与 i=2 换回来(1 2 0)。
    • 此时 i=1 已经没有其他元素可以交换了,把 i=1 与 i=2 换回来(1 0 2)。
  • 以 i=0 为基准,先把 i=0 与 i=1 换回来(0 1 2),继续与后面其他元素交换,与 i=2 交换(2 1 0)。
    • 以 i=1 为基准,分别与后面其他元素交换,先与 i=1 交换(2 1 0)。
      • 以 i=2 为基准,分别与后面其他元素交换,先与 i=2 交换(2 1 0)。
      • 此时 i=2 已经没有其他元素可以交换了,所以输出序列(2 1 0),然后把 i=2 与 i=2 换回来(2 1 0)。
    • 以 i=1 为基准,先把 i=1 与 i=1 换回来(2 1 0),继续与后面其他元素交换,与 i=2 交换(2 0 1)。
      • 以 i=2 为基准,分别与后面其他元素交换,先与 i=2 交换(2 0 1)。
      • 此时 i=2 已经没有其他元素可以交换了,所以输出序列(2 0 1),然后把 i=2 与 i=2 换回来(2 0 1)。
    • 此时 i=1 已经没有其他元素可以交换了,把 i=1 与 i=2 换回来(2 1 0)。
  • 此时 i=0 已经没有其他元素可以交换了,执行结束。

假设有 1,2,3,4,则:

  • 首先保持 1 不变,对 2,3,4 全排列;
  • 保持 2 不变,对 3,4 全排列;
  • 保持 3 不变,对 4 全排列,4 的全排列只有一种。得到 1,2,3,4;
  • 保持 2 不变,3,4 互换得到 1,2,4,3;
  • 以 1,2 打头的排列完成,接下来把 3 换到 2 的位置,继续上面两步的操作。

【算法描述】

void trace (int init){如果下标 init 超出了数组最大下标输出方案否则循环下标 i: init~数组最大下标交换 A[init], A[i]trace(init+1)交换 A[init], A[i]  // 回溯,为下一次交换做准备
}

【题解】

#include 
using namespace std;void swap (int &x, int &y){int tmp = x;x = y;y = tmp;
}void trace (int A[], int size, int init){if (init == size){for (int j = 0; j < size; j++)printf("%d ", A[j]);printf("\n");}elsefor (int i = init; i < size; i++){swap(A[init], A[i]);trace(A, size, init+1);swap(A[init], A[i]);}
}int main(){int n;int A[10] = {0};while (scanf("%d", &n) != EOF){for (int i = 0; i < n; i++)scanf("%d", &A[i]);printf("全排列:\n");trace(A, n, 0);}return 0;
}

10. 全排列问题(考虑重复数字)

【描述】什么是考虑重复数字的全排列?例如,给定一串数字 1,2,2,那么它们的全排列就是:

  • 1,2,2
  • 2,1,2
  • 2,2,1

可以看到,我们把重复的情况给剔除了。

【分析】假设有四个元素,初始情况为:

i=0i=1i=2i=3
0122

i=0 与 i=1、i=2 交换没有问题,当与 i=3 交换时出现了重复。

i=1 与 i=2 交换没有问题,当与 i=3 交换时出现了重复。

再举个例子,假设有五个元素,初始情况为:

i=0i=1i=2i=3i=4
01232

i=0 与 i=1、i=2、i=3 交换没有问题,当与 i=4 交换时出现了重复。

i=1 与 i=2、i=3 交换没有问题,当与 i=4 交换时出现了重复。

i=2 与 i=4 交换时发生了重复。

请观察以上两个例子,为什么会出现重复?因为当与 i=X 交换出现重复的时候,在 i=X 前面一定存在已经换过相同的元素!所以,只需要判断要交换的元素在前面有无重复出现过就够了!

我们以第二个例子说明,i=0 与 i=1、i=2、i=3 交换没有问题,而 i=4 跟之前换过的 i=2 已经重复了。说明区间 i=0~4 有重复元素。

i=1 与 i=2、i=3 交换没有问题,而 i=4 跟之前换过的 i=2 已经重复了。说明区间 i=1~4 有重复元素。

【题解】

bool isSwap (int A[], int init, int end){for (int i = init; i < end; i++) // 判断基准元素init到要交换元素end的区间内,有没有跟要交换元素end重复的元素 if (A[i] == A[end])return false;return true;
}void trace (int A[], int size, int init){if (init == size){for (int j = 0; j < size; j++)printf("%d ", A[j]);printf("\n");}elsefor (int i = init; i < size; i++){if (isSwap(A, init, i)){  // 判断基准元素init到要交换元素i的区间内,有没有跟要交换元素i重复的元素 swap(A[init], A[i]);trace(A, size, init+1);swap(A[init], A[i]);}}
}

11. 组合问题(取出数字相同但顺序不同,视为不同组合)

【描述】什么是组合?比如,从 4 个数字(1,2,3,4)中取出 3 个数字,有以下取法:

  • 1,2,3
  • 1,2,4
  • 1,3,2
  • 1,3,4
  • 1,4,2
  • 1,4,3
  • 2,1,3
  • 2,1,4
  • 2,3,1
  • 2,3,4
  • 2,4,1
  • 2,4,3
  • 3,1,2
  • 3,1,4
  • 3,2,1
  • 3,2,4
  • 3,4,1
  • 3,4,2
  • 4,1,2
  • 4,1,3
  • 4,2,1
  • 4,2,3
  • 4,3,1
  • 4,3,2

注意:

  • 有些组合取出数字相同但顺序不同,均视为不同组合。
  • 不考虑重复数字。

【输入和输出样例】

4 2 
1 2 3 4
取出2个的组合:
1 2
1 3
1 4
2 1
2 3
2 4
3 1
3 2
3 4
4 1
4 2
4 3

【分析】运用回溯的思想,每次取出一个数字后就标记该数字已使用过,然后尝试取下一个数字。若该数字已被使用过,则继续尝试下一个数字。

  • 使用result数组记录已取得的数字;
  • 使用used数组记录下标对应的元素是否已取出。

【回溯算法描述】

// 取第 cnt 个数字
void trace (int cnt){如果 cnt == 取出的个数输出方案否则尝试数组 A 的每一个数字如果该数字没被取出过取出数字标记该数字已被取出trace(cnt+1); // 取第 cnt+1 个数字放回数字标记该数字没有被取出
}

【题解】

#include 
using namespace std;#define MAX 10// A: 原数组, used: 记录下标对应的元素是否已取出, size: 数组A的长度
// num: 取出多少个数字, cnt: 当前取出第几个数字 
void trace_dict (int A[], bool used[], int size, int num, int cnt){static int result[MAX] = {0};// 若已经取出 num 个数字,则说明已经完成要求,输出方案 if (cnt == num+1){  for (int i = 1; i <= num; i++)printf("%d ", result[i]);printf("\n");return;}// 尝试从数组 A 取出每一个数字 for (int i = 0; i < size; i++){if (!used[i]){  // 如果没有取出该数字 result[cnt] = A[i];  // 取出数字 used[i] = true;      // 下标对应的元素已取出trace_dict(A, used, size, num, cnt+1);  // 开始取出第 cnt+1 个数字 result[cnt] = 0;     // 放回数字 used[i] = false;     // 下标对应的元素未取出}}
}int main(){int A[MAX] = {0};bool used[MAX] = {false};int size, num;while (scanf("%d%d", &size, &num) != EOF){for (int i = 0; i < size; i++)scanf("%d", &A[i]);printf("取出%d个的组合:\n", num);trace_dict(A, used, size, num, 1);  // 初始为取出第 1 个数字 printf("\n");}return 0;
}

12. 组合问题(取出数字相同但顺序不同,视为相同组合)

【描述】什么是组合?比如,从 4 个数字(1,2,3,4)中取出 3 个数字,有以下取法:

  • 1,2,3
  • 1,2,4
  • 1,3,4
  • 2,3,4

注意:

  • 有些组合取出数字相同但顺序不同,均视为同一组合,因此就这么少了。
  • 不考虑重复数字。

【分析】取出下标为第 i 个数字后,在取下一个数字时,只能取区间 [i+1, size-1] 里的数(size 为数组大小),每取一次数都这样操作,就可以避免重复组合了。

【题解】

#include 
using namespace std;#define MAX 10// A: 原数组, used: 记录下标对应的元素是否已取出, size: 数组A的长度
// num: 取出多少个数字, cnt: 当前取出第几个数字, pos: 取出的位置 
void trace(int A[], bool used[], int size, int num, int cnt, int pos){static int result[MAX] = {0};// 若已经取出 num 个数字,则说明已经完成要求,输出方案 if (cnt == num+1){  for (int i = 1; i <= num; i++)printf("%d ", result[i]);printf("\n");return;}// 尝试从数组 A 的 pos 位置开始取出每一个数字 for (int i = pos; i < size; i++){if (!used[i]){  // 如果没有取出该数字 result[cnt] = A[i];  // 取出数字 used[i] = true;      // 下标对应的元素已取出trace(A, used, size, num, cnt+1, i+1);  // 开始取出第 cnt+1 个数字,从下标为 i+1 开始取数result[cnt] = 0;     // 放回数字 used[i] = false;     // 下标对应的元素未取出}}
}int main(){int A[MAX] = {0};bool used[MAX] = {false};int size, num;while (scanf("%d%d", &size, &num) != EOF){for (int i = 0; i < size; i++)scanf("%d", &A[i]);printf("取出%d个的组合:\n", num);trace(A, used, size, num, 1, 0);  // 初始为取出第 1 个数字,从下标为 0 开始取数 printf("\n");}return 0;
}

13. 子集问题(集合代数中的子集定义)

【描述】什么是子集?假设有一集合 {1,2,3,4},求出其子集有:

  • {1}
  • {1,2}
  • {1,3}
  • {1,4}
  • {1,2,3}
  • {1,2,4}
  • {1,3,4}
  • {1,2,3,4}
  • {2}
  • {2,3}
  • {2,4}
  • {2,3,4}
  • {3}
  • {3,4}
  • {4}

注意:

  • 按照集合定义,有些取出数字相同但顺序不同,均视为同一子集。
  • 按照集合定义,子集并不等同于真子集,所以 1,2,3,4 也算子集。
  • 不考虑重复数字。
  • 空集不用输出。

【分析】一种最简单的想法是将组合问题的程序直接拿过来用,分别输出取出 1 个数、取出 2 个数、取出 3 个数、···的方案。

【题解】

#include 
using namespace std;#define MAX 10// A: 原数组, used: 记录下标对应的元素是否已取出, size: 数组A的长度
// num: 取出多少个数字, cnt: 当前取出第几个数字, pos: 取出的位置 
void trace(int A[], bool used[], int size, int num, int cnt, int pos){static int result[MAX] = {0};// 若已经取出 num 个数字,则说明已经完成要求,输出方案 if (cnt == num+1){  printf("{");for (int i = 1; i <= num; i++){if (i != num)printf("%d,", result[i]);elseprintf("%d}", result[i]);}printf("\n");return;}// 尝试从数组 A 的 pos 位置开始取出每一个数字 for (int i = pos; i < size; i++){if (!used[i]){  // 如果没有取出该数字 result[cnt] = A[i];  // 取出数字 used[i] = true;      // 下标对应的元素已取出trace(A, used, size, num, cnt+1, i+1);  // 开始取出第 cnt+1 个数字,从下标为 i+1 开始取数result[cnt] = 0;     // 放回数字 used[i] = false;     // 下标对应的元素未取出}}
}int main(){int A[MAX] = {0};bool used[MAX] = {false};int size;while (scanf("%d", &size) != EOF){for (int i = 0; i < size; i++)scanf("%d", &A[i]);for (int i = 1; i <= size; i++){printf("取出%d个的子集:\n", i);trace(A, used, size, i, 1, 0);  // 目标是取出 i 个数字,初始为取出第 1 个数字,从下标为 0 开始取数 }printf("\n");}return 0;
}

【输入和输出】

4
1 2 3 4
取出1个的子集:
{1}
{2}
{3}
{4}
取出2个的子集:
{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}
取出3个的子集:
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
取出4个的子集:
{1,2,3,4}

相关内容

热门资讯

安卓10系统断网软件,轻松实现... 你有没有遇到过这种情况?手机突然断网了,明明信号满格,却连不上网,急得你团团转。别急,今天就来给你揭...
安卓可以改什么系统版本,体验全... 你有没有想过,你的安卓手机其实可以像换衣服一样,换一个全新的“系统版本”呢?没错,这就是今天我们要聊...
最好的平板游戏安卓系统,畅享指... 亲爱的游戏迷们,你是否在寻找一款能够让你在安卓平板上畅玩无忧的游戏神器?别急,今天我就要给你揭秘,究...
华为安卓系统卡顿解决,华为安卓... 你是不是也遇到了华为安卓系统卡顿的问题?别急,今天就来给你支几招,让你的华为手机重新焕发活力!一、清...
安卓建议升级鸿蒙系统吗,探讨鸿... 亲爱的安卓用户们,最近是不是被鸿蒙系统的新鲜劲儿给吸引了?是不是在犹豫要不要把你的安卓手机升级成鸿蒙...
安卓如何变苹果系统桌面,桌面系... 你有没有想过,把你的安卓手机变成苹果系统桌面,是不是瞬间高大上了呢?想象那流畅的动画效果,那简洁的界...
windows平板安卓系统升级... 你有没有发现,最近你的Windows平板电脑突然变得有些不一样了?没错,就是那个一直默默陪伴你的小家...
安卓系统扩大运行内存,解锁更大... 你知道吗?在科技飞速发展的今天,手机已经成为了我们生活中不可或缺的好伙伴。而手机中,安卓系统更是以其...
安卓系统怎么改变zenly,探... 你有没有发现,你的安卓手机上的Zenly应用最近好像变得不一样了?没错,安卓系统的大手笔更新,让Ze...
英特尔安卓子系统,引领高效移动... 你有没有想过,手机里的安卓系统竟然也能和电脑上的英特尔处理器完美结合呢?这可不是天方夜谭,而是科技发...
永远会用安卓系统的手机,探索安... 亲爱的手机控们,你是否也有那么一款手机,它陪伴你度过了无数个日夜,成为了你生活中不可或缺的一部分?没...
有哪些安卓手机系统好用,好用系... 你有没有发现,现在手机市场上安卓手机的品牌和型号真是琳琅满目,让人挑花了眼?不过别急,今天我就来给你...
卡片记账安卓系统有吗,便捷财务... 你有没有想过,用手机记账是不是比拿着小本本记录来得方便多了?现在,手机上的应用层出不穷,那么,有没有...
武汉摩尔影城安卓系统APP,便... 你有没有想过,一部手机就能带你走进电影的世界,享受大屏幕带来的震撼?今天,就让我带你详细了解武汉摩尔...
联想刷安卓p系统,畅享智能新体... 你有没有发现,最近联想的安卓P系统刷机热潮可是席卷了整个互联网圈呢!这不,我就迫不及待地来和你聊聊这...
mac从安卓系统改成双系统,双... 你有没有想过,你的Mac电脑从安卓系统改成双系统后,生活会有哪些翻天覆地的变化呢?想象一边是流畅的苹...
kindke安卓系统激活码,激... 亲爱的读者,你是否在寻找一款能够让你手机焕然一新的操作系统?如果你是安卓用户,那么今天我要给你带来一...
萤石云监控安卓系统,安卓系统下... 你有没有想过,家里的安全可以随时随地掌握在手中?现在,有了萤石云监控安卓系统,这不再是梦想啦!想象无...
手机安卓系统会不会爆炸,系统升... 手机安卓系统会不会爆炸——一场关于安全的探讨在当今这个数字化的世界里,手机已经成为我们生活中不可或缺...
安卓系统双清详图解,恢复出厂设... 你有没有遇到过手机卡顿、运行缓慢的问题?别急,今天就来给你详细解析一下安卓系统的“双清”操作,让你的...