目录
概念
结构
插入
父亲为红,叔叔存在且为红
父亲为红,叔叔不存在或者为黑
单旋
双旋
红黑树的验证
红黑树删除
红黑树性能分析
红黑树是一种二叉平衡搜索树,以颜色标记每一个节点,通过对颜色的限制,确保没有一条路径长度路径长度的两倍,所以是近似平衡的。
性质
1.每个节点不是红就是黑
2.根节点是黑色
3.如果一个节点是红色的,那么它的两个孩子节点是黑色的
4.每条路径黑色节点数目相等
5.每个叶子节点都是黑色的,此处指的是空节点。
enum Color
{RED,BLACK
};
template
struct RBNode
{RBNode* _left;RBNode* _right;RBNode* _parent;pair _kv;Color _col;RBNode(const pair& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED){}
};
template
class RBTree
{typedef RBNode Node;
public:RBTree():_root(nullptr){}
private:Node* _root;
};
红黑树插入的新节点颜色为红。
插入分为两步:
1.按二叉搜索树规则插入
2.调整颜色
解决方法:p,u变黑,g变红,从g开始继续向上调整
void RoateL(Node* parent){//更改链接关系Node* parentparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if (parentparent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (parentparent->_left == parent){parentparent->_left = subR;subR->_parent = parentparent;}else{parentparent->_right = subR;subR->_parent = parentparent;}}}void RoateR(Node* parent){//更改链接关系Node* parentparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (parentparent->_left == parent){parentparent->_left = subL;subL->_parent = parentparent;}else{parentparent->_right = subL;subL->_parent = parentparent;}}}
解决办法:
左边高:先对p左旋,再对g右旋,cur变黑,g变红
右边高: 先对p右旋,再对g左旋,cur变黑,g变红
bool Insert(const pair& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}//先插入节点Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if(cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}//开始调整while (parent && parent->_col==RED)//当父亲为红才需要调整{Node* grandfather = parent->_parent;//grandfather一定存在if (grandfather->_left == parent){Node* uncle = grandfather->_right;//1.uncle存在且为红,p,u变黑,g变红,向上调整if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}//2.uncle不存在或为黑,此时进行旋转else{Node* uncle = grandfather->_right;//单纯左边高// g// p//cur//此时对g进行右旋,p变黑,g变红if (parent->_left == cur){RoateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}// g//p// cur//此时先对p进行左旋,再对g进行右旋//cur变黑,g变红else{RoateL(parent);RoateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;//1.uncle存在且为红,p,u变黑,g变红,向上调整if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}//2.uncle不存在或为黑else{//单纯右边高// g// p// cur//对g进行左旋,g变红,p变黑if (parent->_right == cur){RoateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}//// g// p// cur// 此时先对p进行右旋,再对g进行左旋,cur变黑,g变红else{RoateR(parent);RoateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}
1.查看根节点是否为黑
2.查看是否有连续红节点
3.走到空就比较当前路径黑色节点数的参照值是否相等,不相等返回false
选取最左路径当参照值
bool _isBanlance(Node* root, int banchmark, int blacknum){if (root == nullptr){if (banchmark != blacknum){cout << "有路径中黑节点数量不相等"<_col == RED && root->_parent->_col == RED){cout << "出现连续红节点" << endl;cout << root->_kv.first << endl;return false;}if (root->_col == BLACK){++blacknum;}return _isBanlance(root->_left, banchmark, blacknum) &&_isBanlance(root->_right, banchmark, blacknum);}
bool isBanlance(){if (_root && _root->_col == RED){cout << "根节点不为红" << endl;return false;}Node* cur = _root;int banchmark = 0;while (cur){if (cur->_col == BLACK){banchmark++;}cur = cur->_left;}int blacknum = 0;return _isBanlance(_root, banchmark, blacknum);}
删除本篇不做讲解,如有兴趣,参考算法导论。
红黑树和AVL树查找效率都为logn,但是红黑树不追求绝对平衡,保证最长路径不超过最短路径的二倍,达到近似平衡,减少了旋转的次数,所以在增删结构中红黑树更优,并且红黑树实现比AVL树简单,因此运用红黑树较多,map和set底层也是采用红黑树实现的。