Linux pinctrl子系统概念介绍和LED驱动示例
创始人
2025-05-31 07:48:48
0

Linux pinctrl子系统介绍

在很多SOC内部都有pin的控制器,通过配置pin控制器,可以将引脚配置为特定的功能特性,在软件方面,linux内核提供pinctrl子系统,目的为了统一soc厂商的pin脚管理。

以NXP i.MX7D为例,每个IO引脚有多达8种的复用功能,具体用哪一种功能,通过IOMUXC来配置引脚的具体特性。

Linux pinctrl的处理工作

引脚复用

在Linux内核DT文件夹中arch/arm/boot/dts/imx7d-pinfunc.h的文件中,定义了所有引脚的复用配置。以下面的为例

#define MX7D_PAD_I2C1_SDA_GPIO4_IO9   0x014c 0x03BC 0x0000 0x5 0x0
  • 0x014c是IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA多路复用寄存器的偏移量

  • 0x03BC是IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA控制寄存器的偏移量

  • 0x5 是IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA多路复用寄存器ALT5的模式,也就当做普通的GPIO来用

引脚配置

引脚的具体配置,从linux3.x内核后都是在设备树中进行具体的复用和配置。

以ledclassRGB节点为例,此节点对应的IO配置为pinctrl_gpio_leds、pinctrl_gpio_led,其中pinctrl_gpio_leds主要对MX7D_PAD_SAI2_TX_BCLK__GPIO6_IO20、MX7D_PAD_SAI2_RX_DATA__GPIO6_IO21引脚进行复用,最后的0x11是配置前面控制寄存器的值

0x11

mux_reg:复用配置寄存器偏移地址
conf_reg:引脚配置寄存器偏移地址
input_reg:输入配置寄存器偏移地址
mux_mode:复用配置寄存器值
input_val:输入配置寄存器值
ledclassRGB {compatible = "arrow,RGBclassleds";reg = <0x30200000 0x60000>;    pinctrl-names = "default";pinctrl-0 = <&pinctrl_gpio_leds &pinctrl_gpio_led>;red {label = "red";};green {label = "green";};blue {label = "blue";linux,default-trigger = "heartbeat";};};pinctrl_gpio_leds: pinctrl_gpio_leds_grp {fsl,pins = ;};

MMIO(内存映射IO)设备访问

对外围设备的控制是通过写入及读取其寄存器来实现的,通过内存地址空间(MMIO)或地址空间(PIO)的连续地址来访问这些寄存器的

1:MMIO

主存和IO设备使用相同的总线地址

使用常规指令访问IO设备

linux支持的不同体系结构中使用广泛的IO方法

2:PIO

主存和IO设备使用不同的地址空间

使用特殊的CPU指令来访问IO设备

x86上的示例:IN和OUT指令

i.MX7D使用的是MMIO,但是驱动程序中无法直接访问物理地址,需要MMU进行映射。

可以通过下面的函数

1:使用ioremap、iounmap

2: 使用devm_ioremap、devm_iounmap

3:ioread8\ioread16 iowrite8\iowrite16

LED驱动示例:

#include 
#include 
#include 
#include 
#include 
#include #define GPDAT1_offset        0x00
#define GPDIR1_offset        0x04
#define GPDAT6_offset        0x50000
#define GPDIR6_offset        0x50004#define GPIO1_DIR_MASK 1 << 2
#define GPIO1_DATA_MASK 1 << 2#define GPIO6_DIR_MASK (1 << 20 | 1 << 21)
#define GPIO6_DATA_MASK (1 << 20 | 1 << 21)#define LED_RED_MASK 1 << 2
#define LED_GREEN_MASK 1 << 20
#define LED_BLUE_MASK 1 << 21struct led_dev
{u32 led_mask; /* different mask if led is R,G or B */void __iomem *base;struct led_classdev cdev;
};static void led_control(struct led_classdev *led_cdev, enum led_brightness b)
{u32 read, write;struct led_dev *led = container_of(led_cdev, struct led_dev, cdev);if (b != LED_OFF) { /* LED ON */if (led->led_mask == LED_RED_MASK) {read = ioread32(led->base + GPDAT1_offset);write = read | led->led_mask;iowrite32(write, led->base + GPDAT1_offset);}if ((led->led_mask == LED_GREEN_MASK) || (led->led_mask == LED_BLUE_MASK)) {read = ioread32(led->base + GPDAT6_offset);write = read | led->led_mask;iowrite32(write, led->base + GPDAT6_offset);}}else {if (led->led_mask == LED_RED_MASK) {read = ioread32(led->base + GPDAT1_offset);write = read & ~(led->led_mask);iowrite32(write, led->base + GPDAT1_offset);}if ((led->led_mask == LED_GREEN_MASK) || (led->led_mask == LED_BLUE_MASK)) {read = ioread32(led->base + GPDAT6_offset);write = read & ~(led->led_mask);iowrite32(write, led->base + GPDAT6_offset);}}
}static int __init ledclass_probe(struct platform_device *pdev)
{u32 GPDIR1_read, GPDIR1_write;u32 GPDIR6_read, GPDIR6_write;u32 GPDAT1_read, GPDAT1_write;u32 GPDAT6_read, GPDAT6_write;void __iomem *g_ioremap_addr;struct device_node *child;struct resource *r;struct device *dev = &pdev->dev;int count, ret;dev_info(dev, "platform_probe enter\n");/* get our first memory resource from device tree */r = platform_get_resource(pdev, IORESOURCE_MEM, 0);if (!r) {dev_err(dev, "IORESOURCE_MEM, 0 does not exist\n");return -EINVAL;}dev_info(dev, "r->start = 0x%08lx\n", (long unsigned int)r->start);dev_info(dev, "r->end = 0x%08lx\n", (long unsigned int)r->end);/* ioremap our memory region */g_ioremap_addr = devm_ioremap(dev, r->start, resource_size(r));if (!g_ioremap_addr) {dev_err(dev, "ioremap failed \n");return -ENOMEM;}count = of_get_child_count(dev->of_node);if (!count)return -EINVAL;dev_info(dev, "there are %d nodes\n", count);/* Set GPIO1_IO_2 direction bit to output */GPDIR1_read = ioread32(g_ioremap_addr + GPDIR1_offset);GPDIR1_write = GPDIR1_read | (GPIO1_DIR_MASK);iowrite32(GPDIR1_write, g_ioremap_addr + GPDIR1_offset);GPDIR6_read = ioread32(g_ioremap_addr + GPDIR6_offset);GPDIR6_write = GPDIR6_read | (GPIO6_DIR_MASK);iowrite32(GPDIR6_write, g_ioremap_addr + GPDIR6_offset);/* set all leds to 0 output */GPDAT1_read = ioread32(g_ioremap_addr + GPDAT1_offset);GPDAT1_write = GPDAT1_read & ~(GPIO1_DATA_MASK);iowrite32(GPDAT1_write, g_ioremap_addr + GPDAT1_offset);GPDAT6_read = ioread32(g_ioremap_addr + GPDAT6_offset);GPDAT6_write = GPDAT6_read & ~(GPIO6_DATA_MASK);iowrite32(GPDAT6_write, g_ioremap_addr + GPDAT6_offset);for_each_child_of_node(dev->of_node, child){struct led_dev *led_device;struct led_classdev *cdev;led_device = devm_kzalloc(dev, sizeof(*led_device), GFP_KERNEL);if (!led_device)return -ENOMEM;cdev = &led_device->cdev;led_device->base = g_ioremap_addr;of_property_read_string(child, "label", &cdev->name);if (strcmp(cdev->name,"red") == 0) {led_device->led_mask = LED_RED_MASK;led_device->cdev.default_trigger = "heartbeat";}else if (strcmp(cdev->name,"green") == 0) {led_device->led_mask = LED_GREEN_MASK;}else if (strcmp(cdev->name,"blue") == 0) {led_device->led_mask = LED_BLUE_MASK;}else {dev_info(dev, "Bad device tree value\n");return -EINVAL;}/* Disable timer trigger until led is on */led_device->cdev.brightness = LED_OFF;led_device->cdev.brightness_set = led_control;ret = devm_led_classdev_register(dev, &led_device->cdev);if (ret) {dev_err(dev, "failed to register the led %s\n", cdev->name);of_node_put(child);return ret;}}dev_info(dev, "leds_probe exit\n");return 0;
}static int __exit ledclass_remove(struct platform_device *pdev)
{dev_info(&pdev->dev, "leds_remove enter\n");dev_info(&pdev->dev, "leds_remove exit\n");return 0;
}static const struct of_device_id my_of_ids[] = {{ .compatible = "arrow,RGBclassleds"},{},
};MODULE_DEVICE_TABLE(of, my_of_ids);static struct platform_driver led_platform_driver = {.probe = ledclass_probe,.remove = ledclass_remove,.driver = {.name = "RGBclassleds",.of_match_table = my_of_ids,.owner = THIS_MODULE,}
};static int ledRGBclass_init(void)
{int ret_val;pr_info("demo_init enter\n");ret_val = platform_driver_register(&led_platform_driver);if (ret_val !=0){pr_err("platform value returned %d\n", ret_val);return ret_val;}pr_info("demo_init exit\n");return 0;
}static void ledRGBclass_exit(void)
{pr_info("led driver enter\n");platform_driver_unregister(&led_platform_driver);pr_info("led driver exit\n");
}module_init(ledRGBclass_init);
module_exit(ledRGBclass_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal ");
MODULE_DESCRIPTION("This is a driver that turns on/off RGB leds \using the LED subsystem");

相关内容

热门资讯

单片机stm32新建工程后的编... STM32学习之新建工程模板_stm32工程模板_榕林子的博客-CSDN博客 1、按基本模板新建全新...
【Selenium自动化测试】... JS调用 有些页面操作不能依靠WebDriver 提供的API 来实现,如浏览器滚动条...
苹果笔要不要买原装的?平价又好... 随着科技的不断进步,各种电容笔的生产厂家也随着越来越多。一支优秀的电容笔不仅能大大提高...
3分钟彻底搞懂Web UI自动... 大家好,我是凡哥。 今天,我们来聊聊Web UI自动化测试中的POM设...
[Delphi]一个功能完备的... 本软件使用Delphi 10.3.3编写和测试, 源码中用到了System.NetEncoding和...
java中单例模式的实现 文章目录单例模式前言1.饿汉模式1.1 特点1.2 代码实现2. 懒汉模式2.1 特点2.2 代码实...
Kubernetes集群 服务... Kubernetes集群 服务暴露 Nginx Ingress Controller 一、ingre...
【软件环境安装部署】华为云服务... RabbitMQ 简介 一、什么是RabbitMQ? RabbitMQ简称MQ是一套实...
雪花算法:生成全局唯一 ID ... 提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮...
删除的文件还能找回吗?快速找回...   删除的文件还能找回吗?有使用电脑,就会有删除。可以直接或间接的删除电脑上的照片、视...
算法基础-回溯算法 回溯算法大致分为以下几类: 组合:组合、组合总和、电话号码的字母组合 分...
【Vue3实践】(四)优雅使用... 文章目录1.前言2.属性透传3.依赖注入4.组件插槽(slot)4.1....
【Java学习笔记】41.Ja... 前言 本章介绍Java的文档注释和Java 8 新特性。 Java 文档注释 Java 支持三种注释...
SQL注入之DnsLog注入 一、原理 DnsLog注入并不是一种攻击方式,而是一种让无回显的攻击,变...
【机器学习算法复现】随机森林,... 随机森林就是通过集成学习的Bagging思想将多棵树集成的一种算法:它的基本单元就是决...
sheng的学习笔记-IO多路... 基础概念IO分为几种:同步阻塞的BIO,同步非阻塞的NIO,...
栈----数据结构 栈🔆栈的概念🔆栈的结构🔆栈的实现🔆括...
SpringMVC拦截器和拦截... 文章目录1.拦截器概述2.拦截器和过滤器的区别3.拦截器开发4.拦截器的执行流程5.拦截器链配置1....
springMVC01- 文章目录今日目标一、SpringMVC简介1 SpringMVC概述问题导入1.1 SpringMV...
python基础语法【模块 包... 模块 包 异常捕获 1.模块 python一个py文件就是一个模块 1.1 使用方法 1)前提&#x...