线性回归 梯度下降原理与基于Python的底层代码实现
创始人
2025-05-31 19:47:31
0

线性回归基础知识可查看该专栏中其他文章。

文章目录

  • 1 梯度下降算法原理
  • 2 一元函数梯度下降示例代码
  • 3 多元函数梯度下降示例代码

1 梯度下降算法原理

梯度下降是一种常用的优化算法,可以用来求解许包括线性回归在内的许多机器学习中的问题。前面讲解了直接使用公式求解θ\thetaθ (最小二乘法的求解推导与基于Python的底层代码实现),但是对于复杂的函数来说,可能较难求出对应的公式,因此需要使用梯度下降。

假设我们要求解的线性回归公式是:

y=β0+β1x1+β2x2+...+βnxn+ϵy = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilony=β0​+β1​x1​+β2​x2​+...+βn​xn​+ϵ

其中 yyy 是因变量,βi\beta_iβi​ 是回归系数,xix_ixi​ 是自变量,ϵ\epsilonϵ 是误差项。我们的目标是找到一组回归系数 βi\beta_iβi​,使得模型能够最小化误差。

使用梯度下降算法求解线性回归可以分为以下步骤:

  1. 随机初始化回归系数 βi\beta_iβi​。

  2. 计算模型的预测值 y^\hat{y}y^​:

y^=β0+β1x1+β2x2+...+βnxn\hat{y} = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_ny^​=β0​+β1​x1​+β2​x2​+...+βn​xn​

  1. 计算误差(或损失函数):

J(β0,β1,...,βn)=12m∑i=1m(yi−yi^)2J(\beta_0, \beta_1, ..., \beta_n) = \frac{1}{2m}\sum_{i=1}^{m}(y_i - \hat{y_i})^2J(β0​,β1​,...,βn​)=2m1​i=1∑m​(yi​−yi​^​)2

其中 mmm 是样本数量,yiy_iyi​ 是第 iii 个样本的真实值,yi^\hat{y_i}yi​^​ 是对应的预测值。

  1. 计算误差对于每个回归系数的偏导数:

∂J∂βj=1m∑i=1m(yi^−yi)xij\frac{\partial J}{\partial \beta_j} = \frac{1}{m}\sum_{i=1}^{m}(\hat{y_i} - y_i)x_{ij}∂βj​∂J​=m1​i=1∑m​(yi​^​−yi​)xij​

其中 xijx_{ij}xij​ 是第 iii 个样本的第 jjj 个特征值。

  1. 使用梯度下降更新回归系数:

βj=βj−α∂J∂βj\beta_j = \beta_j - \alpha\frac{\partial J}{\partial \beta_j}βj​=βj​−α∂βj​∂J​

其中 α\alphaα 是学习率,用来控制更新的步长。

  1. 重复步骤 2-5多次,直到误差达到某个预定的阈值或者达到预设的迭代次数。

梯度下降算法会不断迭代,直到误差最小化。通过不断更新回归系数,模型逐渐拟合数据,从而得到最终的结果。
在这里插入图片描述

(非常经典的图,已经要盘包浆了)

2 一元函数梯度下降示例代码

  1. 导入此次代码所需的包,设置绘图时正常处理中文字符。
import numpy as np  
import matplotlib as mpl  
import matplotlib.pyplot as plt  mpl.rcParams['font.sans-serif'] = [u'SimHei']  
mpl.rcParams['axes.unicode_minus'] = False
  1. 定义本次要模拟的函数。为了方便起见,这里直接对函数的导数进行了定义。也可根据需要调包求梯度或者自己写一个求偏导的类。
# 一维原始图像  
def f1(x):  return 0.5 * (x - 2) ** 2  
# 导函数  
def h1(x):  return 0.5 * 2 * (x - 2)
  1. 初始化梯度下降中的参数
GD_X = []  
GD_Y = []  
x = 4  
alpha = 0.1  
f_change = 1  
f_current = f1(x)  
GD_X.append(x)  
GD_Y.append(f_current)  
iter_num = 0

此处GD_X与GD_Y两个列表分别用于存储梯度下降的每一步取值,用于后面的画图。x是梯度下降的起点,可设置为随机数。f_change用于存储执行每次循环之后,y的变化值。此处赋值的意义仅在于确保能进入下面的循环而不会报错。iter_num用于记录循环执行的次数。alpha学习率,取值过大容易难以收敛,取值过小容易增加计算量。
4. 梯度下降步骤的循环

while f_change > 1e-10 and iter_num < 1000:iter_num += 1  x = x - alpha * h1(x)  tmp = f1(x)  f_change = np.abs(f_current - tmp)  f_current  = tmp  GD_X.append(x)  GD_Y.append(f_current)

循环结束的标准为:两次循环的y值变化(即f_change)小于1e-10或循环次数大于100。
每次循环,x的变化量都是学习率乘以这一点的梯度。之后计算变化后x对应的y和变化前x对应的外,获得两次y的差值。并将每次运行的结果使用append保存到列表之中。
5. 结果输出

print(u"最终结果为:(%.5f, %.5f)" % (x, f_current))  
print(u"迭代次数:%d" % iter_num)

image.png
大概100次后,我们找到了损失函数最小值所对应的x。
6. 结果绘图

X = np.arange(-2, 6, 0.05)  
Y = np.array(list(map(lambda t: f1(t), X)))  plt.figure(facecolor='w')  
plt.plot(X, Y, 'r-', linewidth=2)  
plt.plot(GD_X, GD_Y, 'bo--', linewidth=2)  
plt.title(f'函数$y=0.5 * (θ - 2)^2$ \n学习率:{alpha:.3f}  最终解:x={x:.3f} y={f_current:.3f}  迭代次数:{iter_num}')  
plt.show()

可以自行尝试不同的起点,不同的学习速率对结果的影响。
在这里插入图片描述
在这里插入图片描述

3 多元函数梯度下降示例代码

当变量数为2时,梯度下降可以使用3维绘图展示。当变量书超过2时,损失函数变为超平面难以展示,因此此处以二元函数为例。

  1. 定义本次要模拟的函数。
# 二元函数定义  
def f2(x, y):  return (x - 2) ** 2 + 2* (y + 1) ** 2  
# 偏导数  
def hx2(x, y):  return 2*(x - 2)  
def hy2(x, y):  return 4*(y + 1)

与一元函数相同,我们对函数的偏导数直接定义,减少非本博客相关的代码。
2. 初始化梯度下降中的参数

GD_X1 = []  
GD_X2 = []  
GD_Y = []  
x1 = 4  
x2 = 4  
alpha = 0.01  
f_change = 1  
f_current = f2(x1, x2)  
GD_X1.append(x1)  
GD_X2.append(x2)  
GD_Y.append(f_current)  
iter_num = 0

这里与一元函数的参数基本相同,只是多了一个用于存储额外维度的listGD_X2。
3. 梯度下降步骤的循环

while f_change > 1e-10 and iter_num < 1000:  iter_num += 1  prex1 = x1  prex2 = x2  x1 = x1 - alpha * hx2(prex1, prex2)  x2 = x2 - alpha * hy2(prex1, prex2)  tmp = f2(x1, x2)  f_change = np.abs(f_current - tmp)  f_current = tmp  GD_X1.append(x1)  GD_X2.append(x2)  GD_Y.append(f_current)  print(u"最终结果为:(%.3f, %.3f, %.3f)" % (x1, x2, f_current))  
print(u"迭代次数:%d" % iter_num)

此处的逻辑与一元函数基本相同。对于每一个x,都使用对应的偏导数乘以学习速率,从而获得新的x值。如果是二元以上的多元函数同理。
运行结果为:
image.png

  1. 绘图
X1 = np.arange(-5, 5, 0.2)  
X2 = np.arange(-5, 5, 0.2)  
X1, X2 = np.meshgrid(X1, X2)  
Y = np.array(list(map(lambda t: f2(t[0], t[1]), zip(X1.flatten(), X2.flatten()))))  
Y.shape = X1.shapefig = plt.figure(facecolor='w')  
ax = Axes3D(fig)  
ax.plot_surface(X1, X2, Y, rstride=1, cstride=1, cmap=plt.cm.jet, alpha=0.8)  
ax.plot(GD_X1, GD_X2, GD_Y, 'ko-')  
ax.set_xlabel('x')  
ax.set_ylabel('y')  
ax.set_zlabel('z')  
plt.show()

对于三维数据,我们使用meshgrid构建了绘图网格,用于绘制函数图像。在绘制完函数图像的基础上,绘制梯度下降每一步的图像。绘制折线图时,ko-代表黑色、圆点、虚线。
(3D图像建议设置为单独显示,方便拖动视角查看)
在这里插入图片描述

实际上,梯度下降的种类也有很多,比如随机梯度下降、批量梯度下降,小批量梯度下降。这些内容将会在下一篇博客中进行讲解。

相关内容

热门资讯

【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...
【2023-03-22】SRS... 【2023-03-22】SRS推流搭配FFmpeg实现目标检测 说明: 外侧测试使用SRS播放器测...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
初级算法-哈希表 主要记录算法和数据结构学习笔记,新的一年更上一层楼! 初级算法-哈希表...
进程间通信【Linux】 1. 进程间通信 1.1 什么是进程间通信 在 Linux 系统中,进程间通信...
【Docker】P3 Dock... Docker数据卷、宿主机与挂载数据卷的概念及作用挂载宿主机配置数据卷挂载操作示例一个容器挂载多个目...