算法基础-回溯算法
创始人
2025-06-01 15:02:31
0

回溯算法大致分为以下几类:
组合:组合、组合总和、电话号码的字母组合
分割:分割回文串、复原IP地址
子集:子集
排列:全排列
棋盘问题:N皇后、解数独
其他:递增子序列、重新安排行程

一、什么是回溯算法

回溯算法也可以叫做回溯搜索法,它是一种搜索方法。
回溯是递归的副产品,只要有递归就会有回溯(递归中隐藏着回溯算法)。
所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数。

二、回溯算法解决什么问题

回溯算法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出K个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有多少种排列方式
  • 棋盘问题:N皇后,解数独等

这里再帮大家回顾一下高中的排列组合知识。
组合和排列的区别是,组合是不强调元素顺序的,而排列强调元素顺序。
举个最简单的例子:[1,2]这个集合,论组合只有[1,2]这一个集合,论排列却有[1,2]、[2,1]这两个集合。

三、如何理解回溯算法

回溯法解决的问题都可以抽象成树形结构,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,构成了树的深度。递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

四、回溯算法模板

1、回溯函数模板返回值以及参数

回溯算法中函数返回值一般为void。再来看一下参数,因为回溯算法需要的参数不像二叉树递归的时候那么容易一次性确定下来,所以一般先写逻辑,然后需要什么参数,就填什么参数。
回溯函数伪代码如下:

void backtrack(参数)

2、回溯函数终止条件

回溯法是一种树形结构,那么一定就会有终止条件。
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
所以回溯函数终止条件伪代码如下:

if (终止条件) {存放结果;return;
}

3、回溯搜索的遍历过程

回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成了树的深度。
如下图:

在这里插入图片描述

图中特意举例集合大小和孩子数量相等。
回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtrack(路径, 选择列表);  // 递归回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。
backtrack这里自己调用自己,实现递归。
可以从图中看出for循环可以理解是横向遍历,backtrack是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜到的叶子节点就是找的其中的一个结果了。
分析完过程,回溯算法模板框架如下:

void backtrack(参数)
if (终止条件) {存放结果;return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtrack(路径, 选择列表);  // 递归回溯,撤销处理结果
}

五、回溯算法效率

虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。
因为回溯的本质是穷举,穷举所有的可能,然后选出我们想要的答案,如果想要回溯法高效一些,可以加一些剪枝的操作,但这也改变不了回溯法就是穷举的本质。
那么,既然回溯法并不高效,为什么还要用它呢?因为对于某些问题来讲,只能使用暴力搜索来解决,除此之外没有更高效的解决方法。

六、回溯算法例题

以LeetCode第46题为例来讲解一下回溯算法的具体应用。

46. 全排列
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。示例 1:输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:输入:nums = [1]
输出:[[1]]提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums 中的所有整数 互不相同

这个问题是典型的回溯递归问题,可用如下代码解答:

void swap(int * nums,int index1,int index2)
{int temp = nums[index1];nums[index1] = nums[index2];nums[index2] = temp;
}void backTrack(int* nums, int numsSize, int* returnSize, int** returnColumnSizes, int** res, int offset)
{if(offset == numsSize) {  // 遍历到了末尾res[*returnSize] = (int *)malloc(sizeof(int ) * numsSize);memcpy(res[*returnSize], nums, sizeof(int) * numsSize );  // 拷贝结果到res中保存(*returnColumnSizes)[*returnSize] = numsSize;  // 记录返回数组中每行的列数*returnSize = *returnSize + 1;} else {//回溯算法的核心for(int i = offset; i < numsSize; i++) {swap(nums, i, offset);  // i 和 offset 交换,如[1,2,3]填入res后,此时步步回溯后,二次循环i为2,off为1,交换后为[1,3,2]backTrack(nums, numsSize, returnSize, returnColumnSizes, res, offset+1);swap(nums, i, offset);  // 从prem返回之后,也即找到一个答案后,将数组恢复为原来状态,在原状基础上继续遍历,如[1,3,2]填入res后恢复为[1,2,3]}}
}int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes)
{//不重复的数字的全排序//组合次数为 n!= n *( n - 1) *( n - 2) ...... 2 * 1//这样的方法适合回溯的方法//取值范围1 <= nums.length <= 6  = 6 * 5 * 4 * 3 *2 * 1 = 720中可能int **res = (int **)malloc(sizeof(int *) * 721);*returnColumnSizes = (int *)malloc(sizeof(int ) * 721);*returnSize = 0;backTrack(nums, numsSize, returnSize, returnColumnSizes, res, 0);return res;
}

相关内容

热门资讯

安卓子系统windows11,... 你知道吗?最近科技圈可是炸开了锅,因为安卓子系统在Windows 11上的兼容性成了大家热议的话题。...
电脑里怎么下载安卓系统,电脑端... 你有没有想过,你的电脑里也能装上安卓系统呢?没错,就是那个让你手机不离手的安卓!今天,就让我来带你一...
索尼相机魔改安卓系统,魔改系统... 你知道吗?最近在摄影圈里掀起了一股热潮,那就是索尼相机魔改安卓系统。这可不是一般的改装,而是让这些专...
安卓系统哪家的最流畅,安卓系统... 你有没有想过,为什么你的手机有时候像蜗牛一样慢吞吞的,而别人的手机却能像风一样快?这背后,其实就是安...
安卓最新系统4.42,深度解析... 你有没有发现,你的安卓手机最近是不是有点儿不一样了?没错,就是那个一直在默默更新的安卓最新系统4.4...
android和安卓什么系统最... 你有没有想过,你的安卓手机到底是用的是什么系统呢?是不是有时候觉得手机卡顿,运行缓慢,其实跟这个系统...
平板装安卓xp系统好,探索复古... 你有没有想过,把安卓系统装到平板上,再配上XP系统,这会是怎样一番景象呢?想象一边享受着安卓的便捷,...
投影仪装安卓系统,开启智能投影... 你有没有想过,家里的老式投影仪也能焕发第二春呢?没错,就是那个曾经陪你熬夜看电影的“老伙计”,现在它...
安卓系统无线车载carplay... 你有没有想过,开车的时候也能享受到苹果设备的便利呢?没错,就是那个让你在日常生活中离不开的iOS系统...
谷歌安卓8系统包,系统包解析与... 你有没有发现,手机更新换代的速度简直就像坐上了火箭呢?这不,最近谷歌又发布了安卓8系统包,听说这个新...
微软平板下软件安卓系统,开启全... 你有没有想过,在微软平板上也能畅享安卓系统的乐趣呢?没错,这就是今天我要跟你分享的神奇故事。想象你手...
coloros是基于安卓系统吗... 你有没有想过,手机里的那个色彩斑斓的界面,背后其实有着一个有趣的故事呢?没错,我要说的就是Color...
安卓神盾系统应用市场,一站式智... 你有没有发现,手机里的安卓神盾系统应用市场最近可是火得一塌糊涂啊!这不,我就来给你好好扒一扒,看看这...
黑莓平板安卓系统升级,解锁无限... 亲爱的读者们,你是否还记得那个曾经风靡一时的黑莓手机?那个标志性的全键盘,那个独特的黑莓体验,如今它...
安卓文件系统采用华为,探索高效... 你知道吗?最近安卓系统在文件管理上可是有了大动作呢!华为这个科技巨头,竟然悄悄地给安卓文件系统来了个...
深度系统能用安卓app,探索智... 你知道吗?现在科技的发展真是让人惊叹不已!今天,我要给你揭秘一个超级酷炫的话题——深度系统能用安卓a...
安卓系统的分区类型,深度解析存... 你有没有发现,你的安卓手机里藏着不少秘密?没错,就是那些神秘的分区类型。今天,就让我带你一探究竟,揭...
安卓系统铠无法兑换,揭秘无法兑... 最近是不是有很多小伙伴在玩安卓系统的游戏,突然发现了一个让人头疼的问题——铠无法兑换!别急,今天就来...
汽车安卓系统崩溃怎么刷,一键刷... 亲爱的车主朋友们,你是否曾遇到过汽车安卓系统崩溃的尴尬时刻?手机系统崩溃还能重启,但汽车系统崩溃了,...
miui系统可以刷安卓p系统吗... 亲爱的手机控们,你是否对MIUI系统情有独钟,同时又对安卓P系统的新鲜功能垂涎欲滴?今天,就让我带你...