数学小抄: 概率角度推导Kalman Filter
admin
2024-01-20 05:24:41
0

复习


参考: [机器人学中的状态估计]
联合概率密度指数部分:

([xy]−[μxμy])⊤[ΣxxΣxyΣyxΣyy]−1([xy]−[μxμy])=([xy]−[μxμy])⊤[10−Σyy−1Σyx1][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1]×[1−ΣxyΣyy−101]([xy]−[μxμy])=(x−μx−ΣxyΣyy−1(y−μy))⊤(Σxx−ΣxyΣyy−1Σyx)−1×(x−μx−ΣxyΣyy−1(y−μy))+(y−μy)⊤Σyy−1(y−μy)\begin{split} &(\begin{bmatrix} x\\y \end{bmatrix}-\begin{bmatrix} \mu_x\\ \mu_y \end{bmatrix})^{\top}\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy}\\ \Sigma_{yx} & \Sigma_{yy}\\ \end{bmatrix}^{-1}(\begin{bmatrix} x\\y \end{bmatrix}-\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}) \\ &= (\begin{bmatrix} x\\y \end{bmatrix}-\begin{bmatrix} \mu_x\\ \mu_y \end{bmatrix})^{\top} \begin{bmatrix} 1 & 0\\ -\Sigma^{-1}_{yy}\Sigma_{yx} & 1\\ \end{bmatrix} \begin{bmatrix} (\Sigma_{xx}-\Sigma_{xy}\Sigma^{-1}_{yy}\Sigma_{yx})^{-1} & 0\\ 0&\Sigma^{-1}_{yy}\\ \end{bmatrix} \\ & \times \begin{bmatrix} 1 & -\Sigma_{xy}\Sigma^{-1}_{yy}\\ 0 & 1\\ \end{bmatrix} (\begin{bmatrix}x\\y\end{bmatrix} - \begin{bmatrix}\mu_x\\ \mu_y\end{bmatrix})\\ &=(x-\mu_x-\Sigma_{xy}\Sigma^{-1}_{yy}(y-\mu_y))^{\top}(\Sigma_{xx}-\Sigma_{xy}\Sigma^{-1}_{yy}\Sigma_{yx})^{-1}\\ & \times (x-\mu_x-\Sigma_{xy} \Sigma^{-1}_{yy}(y-\mu_y))+(y-\mu_y)^{\top}\Sigma^{-1}_{yy}(y-\mu_y) \end{split} ​([xy​]−[μx​μy​​])⊤[Σxx​Σyx​​Σxy​Σyy​​]−1([xy​]−[μx​μy​​])=([xy​]−[μx​μy​​])⊤[1−Σyy−1​Σyx​​01​][(Σxx​−Σxy​Σyy−1​Σyx​)−10​0Σyy−1​​]×[10​−Σxy​Σyy−1​1​]([xy​]−[μx​μy​​])=(x−μx​−Σxy​Σyy−1​(y−μy​))⊤(Σxx​−Σxy​Σyy−1​Σyx​)−1×(x−μx​−Σxy​Σyy−1​(y−μy​))+(y−μy​)⊤Σyy−1​(y−μy​)​

p(x,y)=p(x∣y)p(y)p(x∣y)=N(μx+ΣxyΣyy−1(y−μy),Σxx−ΣxyΣyy−1Σyx)p(y)=N(μy,Σyy)\begin{split} p(x,y) &= p(x|y)p(y) \\ p(x|y) &= \mathcal{N}(\mu_x+\Sigma_{xy}\Sigma^{-1}_{yy}(y-\mu_y),\Sigma_{xx}-\Sigma_{xy}\Sigma^{-1}_{yy}\Sigma_{yx})\\ p(y) &= \mathcal{N}(\mu_y,\Sigma_{yy}) \end{split} p(x,y)p(x∣y)p(y)​=p(x∣y)p(y)=N(μx​+Σxy​Σyy−1​(y−μy​),Σxx​−Σxy​Σyy−1​Σyx​)=N(μy​,Σyy​)​
高斯分布为指数形式, 指数的乘积为等于幂次项的相加

(⋅^)(\hat{\cdot})(⋅^)表示后验, (⋅ˇ)(\check{\cdot})(⋅ˇ)表示先验, 无上标表示真值

k-1时刻的高斯后验为:
p(xk−1∣xˇ0,v1:k−1,y0:k−1)=N(x^k−1,P^k−1)p(x_{k-1}|\check{x}_0,v_{1:k-1},y_{0:k-1})=\mathcal{N}(\hat{x}_{k-1},\hat{P}_{k-1}) p(xk−1​∣xˇ0​,v1:k−1​,y0:k−1​)=N(x^k−1​,P^k−1​)
考虑最近时刻的输入vkv_kvk​, 计算k时刻的高斯先验:
p(xk∣xˇ0,v1:k,y0:k−1)=N(xˇk,Pˇk)p(x_k|\check{x}_0,v_{1:k},y_{0:k-1})=\mathcal{N}(\check{x}_k,\check{P}_k) p(xk​∣xˇ0​,v1:k​,y0:k−1​)=N(xˇk​,Pˇk​)

其中
Pˇk=Ak−1P^k−1Ak−1⊤+Qkxˇk=Ak−1x^k−1+vk\begin{split} \check{P}_k&= A_{k-1}\hat{P}_{k-1}A^{\top}_{k-1}+Q_k\\ \check{x}_k&=A_{k-1}\hat{x}_{k-1}+v_k \end{split} Pˇk​xˇk​​=Ak−1​P^k−1​Ak−1⊤​+Qk​=Ak−1​x^k−1​+vk​​

xˇk=E[xk]=E[Ak−1xk−1+vk+wk]=Ak−1E[xk−1]+vk+E[wk]=Ak−1x^k−1+vk\begin{split} \check{x}_k = E[x_k]&=E[A_{k-1}x_{k-1}+v_k+w_k]\\ &= A_{k-1}E[x_{k-1}]+v_k+E[w_k]=A_{k-1}\hat{x}_{k-1}+v_k \end{split} xˇk​=E[xk​]​=E[Ak−1​xk−1​+vk​+wk​]=Ak−1​E[xk−1​]+vk​+E[wk​]=Ak−1​x^k−1​+vk​​

对于协方差有:
Pˇk=E[(xk−E[xk])(xk−E[xk])⊤]=E[(Ak−1xk−1+vk+wk−Ak−1x^k−1−vk)(Ak−1xk−1+vk+wk−Ak−1x^k−1−vk)⊤]=Ak−1E[(xk−1−x^k−1)(xk−1−x^k−1)⊤]Ak−1⊤+E[wkwk⊤]=Ak−1P^k−1Ak−1⊤+Qk\begin{split} \check{P}_k &= E[(x_k-E[x_k])(x_k-E[x_k])^{\top}]\\ &=E[(A_{k-1}x_{k-1}+v_k+w_k-A_{k-1}\hat{x}_{k-1}-v_k)(A_{k-1}x_{k-1}+v_k+w_k-A_{k-1}\hat{x}_{k-1}-v_k)^{\top}]\\ &=A_{k-1}E[(x_{k-1}-\hat{x}_{k-1})(x_{k-1}-\hat{x}_{k-1})^{\top}]A^{\top}_{k-1}+E[w_kw^{\top}_k]\\ &=A_{k-1}\hat{P}_{k-1}A^{\top}_{k-1}+Q_k \end{split} Pˇk​​=E[(xk​−E[xk​])(xk​−E[xk​])⊤]=E[(Ak−1​xk−1​+vk​+wk​−Ak−1​x^k−1​−vk​)(Ak−1​xk−1​+vk​+wk​−Ak−1​x^k−1​−vk​)⊤]=Ak−1​E[(xk−1​−x^k−1​)(xk−1​−x^k−1​)⊤]Ak−1⊤​+E[wk​wk⊤​]=Ak−1​P^k−1​Ak−1⊤​+Qk​​

对于更新部分(状态与最近一次测量(即k时刻)):
p(xk,yk∣xˇ0,v1:k,y0:k−1)=N([μxμy],[ΣxxΣxyΣyxΣyy])=N([xˇkCkxˇk],[PˇkPˇkCk⊤CkPˇkCkPˇkCk⊤+Rk])\begin{split} p(x_k,y_k|\check{x}_0, v_{1:k},y_{0:k-1})&=\mathcal{N}(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy}\\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix})\\ &=\mathcal{N}(\begin{bmatrix} \check{x}_k\\ C_k\check{x}_k \end{bmatrix},\begin{bmatrix} \check{P}_k & \check{P}_kC^{\top}_k\\ C_k\check{P}_k & C_k\check{P}_kC^{\top}_k+R_k \end{bmatrix}) \end{split} p(xk​,yk​∣xˇ0​,v1:k​,y0:k−1​)​=N([μx​μy​​],[Σxx​Σyx​​Σxy​Σyy​​])=N([xˇk​Ck​xˇk​​],[Pˇk​Ck​Pˇk​​Pˇk​Ck⊤​Ck​Pˇk​Ck⊤​+Rk​​])​

结合高维高斯分布的性质
p(xk∣xˇk,v1:k,y0:k)=N(μx+ΣxyΣyy−1(yk−μy),Σxx−ΣxyΣyy−1Σyx)p(x_k|\check{x}_k,v_{1:k},y_{0:k})=\mathcal{N}(\mu_x+\Sigma_{xy}\Sigma^{-1}_{yy}(y_k-\mu_y),\Sigma_{xx}-\Sigma_{xy}\Sigma^{-1}_{yy}\Sigma_{yx}) p(xk​∣xˇk​,v1:k​,y0:k​)=N(μx​+Σxy​Σyy−1​(yk​−μy​),Σxx​−Σxy​Σyy−1​Σyx​)

x^k\hat{x}_kx^k​作为均值, P^k\hat{P}_kP^k​作为协方差:
Kk=PˇkCk⊤(CkPˇkCk⊤+Rk)−1P^k=(1−KkCk)Pˇkx^k=xˇk+Kk(yk−Ckxˇk)\begin{split} K_k &= \check{P}_kC^{\top}_k(C_k\check{P}_kC^{\top}_k+R_k)^{-1}\\ \hat{P}_k &= (1-K_kC_k)\check{P}_k\\ \hat{x}_k&=\check{x}_k+K_k(y_k-C_k\check{x}_k) \end{split} Kk​P^k​x^k​​=Pˇk​Ck⊤​(Ck​Pˇk​Ck⊤​+Rk​)−1=(1−Kk​Ck​)Pˇk​=xˇk​+Kk​(yk​−Ck​xˇk​)​

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...