C++11多线程thread使用详解
admin
2024-01-31 03:48:41
0

C++11多线程thread

  • 一、线程thread
    • 1.1、语法
      • 1.1.1、构造函数
      • 1.1.2、主要成员函数
    • 1.2、简单线程的创建
    • 1.3、线程封装
    • 1.4、std::this_thread
      • 1.4.1、std::this_thread::get_id()
      • 1.4.2、std::this_thread::yield()
      • 1.4.3、std::this_thread::sleep_for
  • 总结
  • 后言

一、线程thread

std::thread 在 #include< thread>头文件中声明,因此使用 std::thread 时需要包含 include< thread>头文件。

1.1、语法

1.1.1、构造函数

(1)默认构造函数。
创建一个空的 thread 执行对象。

thread() _NOEXCEPT
{// construct with no thread_Thr_set_null(_Thr);
}

(2)初始化构造函数。
创建std::thread执行对象,该thread对象可被joinable,新产生的线程会调用threadFun函数,该函 数的参数由 args 给出。

template
explicit thread(Fn&& fn,Args&& ... args);

&&表示既可以传入左值也可以传入右值。

(3)拷贝构造函数。

// 如果拷贝构造函数(被禁用),意味着 thread 不可被拷贝构造。 
thread(const thread&) = delete;

(4)Move构造函数 。

thread(thread&& x)noexcept

move 构造函数,调用成功之后 x 不代表任何 thread 执行对象。
注意:可被 joinable 的 thread 对象必须在他们销毁之前被主线程 join 或者将其设置为 detached。

示例:

#include 
#include using namespace std;void thread_func(int &a)
{cout << "thread_func: a = " << (a += 10) << endl;
}int main()
{int x = 10;thread t1(thread_func, ref(x));thread t2(move(t1)); // t1 线程失去所有权thread t3;t3 = move(t2); // t2 线程失去所有权// t1.join(); //执行会报错:已放弃 (核心已转储)t3.join();cout << "main end: x = " << x << endl;return 0;
}

执行结果:

thread_func: a = 20
main end: x = 20

1.1.2、主要成员函数

(1)get_id():获取线程ID,返回类型std::thread::id对象。
(2)joinable():判断线程是否可以加入等待。
(3)join():等该线程执行完成后才返回。
(4)detach():
detach调用之后,目标线程就成为了守护线程,驻留后台运行,与之关联的std::thread对象失去对目标线程的关联,无法再通过std::thread对象取得该线程的控制权。当线程主函数执行完之后,线程就结束了,运行时库负责清理与该线程相关的资源。

调用 detach 函数之后:

  1. *this 不再代表任何的线程执行实例。
  2. joinable() == false
  3. get_id() == std::thread::id()

1.2、简单线程的创建

使用std::thread创建线程,提供线程函数或者函数对象,并可以同时指定线程函数的参数。

  1. 传入0个值
  2. 传入2个值
  3. 传入引用
  4. 传入类函数
  5. detach
  6. move

(1)传入0个值:

#include 
#include using namespace std;void thread_func1()
{cout << "thread_func1()" << endl;
}int main()
{thread t1(&thread_func1);	// 只传递函数t1.join();					// 阻塞等待线程函数执行结束return 0;
}

(2)传入2个值:

#include 
#include using namespace std;void thread_func2(int a, int b)
{cout << "thread_func2(): a + b =" << a + b << endl;
}int main()
{int a = 10;int b = 16;thread t2(thread_func2, a, b);t2.join();return 0;
}

(3)传入引用:

#include 
#include using namespace std;void thread_func3(int &c)
{cout << "thread_func3(): &c = " << &c cout << " --> c + 10 =" << (c += 10) << endl;
}int main()
{int c = 10;thread t3(thread_func3, ref(c));t3.join();cout << "main --> 3 : &c = " << &c << ", c = " << c << endl;return 0;
}

(4)传入类函数:

#include 
#include using namespace std;class A
{
public:void func4(int a){cout << "thread:" << name_ << ", fun4 a = " << a << endl;}void setName(string name) { name_ = name; }void displayName() { cout << "this:" << this << ", name:" << name_ << endl; }void play() { std::cout << "play call!" << std::endl; } private: string name_;
};int main()
{cout << "test--------------------------" << endl;A *a_ptr = new A();a_ptr->setName("hello,C++11");thread t4(A::func4, a_ptr, 10);t4.join();delete a_ptr;A *a_ptr2 = new A();a_ptr2->setName("hello,C++14");thread t42(&A::func4, a_ptr2, 10);// 传入类的函数地址、类地址、参数t42.join();delete a_ptr;return 0;
}

最好使用取地址符&的方式传入类函数,避免兼容问题。

(5)detach() :
将子线程从主线程中分离出来,主线程不再具有管理此子线程的能力。

#include 
#include using namespace std;void thread_func5()
{cout << "func5 into sleep " << endl;this_thread::sleep_for(chrono::seconds(2));cout << "func5 leave " << endl;
}int main()
{thread t5(&thread_func5);t5.detach();// t5.join() // 抛出异常cout << "t5 id : " << t5.get_id() << endl; // 抛出异常cout << "t5 joinable: " << t5.joinable() << endl;return 0;
}

执行结果:

t5 id : thread::id of a non-executing thread
t5 joinable: 0

(6)std::move() :
线程所有权转移。

#include 
#include using namespace std;int main()
{thread t6(func6);thread t7(move(t6));//t6.join(); // 抛出异常 cout << "t6 id : " << t6.get_id() << endl;cout << "t6 joinable: " << t6.joinable() << endl;cout << "t7 joinable: " << t7.joinable() << endl;t7.join();return 0;
}

执行结果:

t6 id : thread::id of a non-executing thread
t6 joinable: 0
t7 joinable: 1
this is func6 !

1.3、线程封装

封装线程,子类能继承,然后子类能实现具体的业务逻辑。创建线程通过new来实现,参数列表和使用构造函数创建是一样的。

ower_thread.h

#ifndef _OWER_THREAD_H_
#define _OWER_THREAD_H_#include class Ower_Thread {
public:Ower_Thread(); // 构造函数virtual ~Ower_Thread(); // 析构函数bool start(); void stop(); bool isAlive() const; // 线程是否存活std::thread::id id(){return th_->get_id();}std::thread* getThread(){return th_;}void join();	// 等待当前线程结束, 不能在当前线程上调用void detach();	//能在当前线程上调用static size_t CURRENT_THREADID();protected: void threadEntry(); virtual void run() = 0; // 运行 
protected: bool running_; //是否在运行 std::thread *th_;
};#endif

ower_thread.cc

#include "ower_thread.h"
#include 
#include 
#include Ower_Thread::Ower_Thread() :running_(false), th_(NULL)
{}Ower_Thread::~Ower_Thread()
{if (th_ != NULL){//如果到调用析构函数的时候,调用者还没有调用join则触发detach,此时是一个比较危险的动 作,用户必须知道他在做什么if (th_->joinable()){std::cout << "~Ower_Thread detach"<detach();}delete th_;th_ = NULL;}std::cout << "~Ower_Thread()" << std::endl;
}bool Ower_Thread::start()
{if (running_){return false;}try{th_ = new std::thread(&Ower_Thread::threadEntry, this);}catch (...){throw "[Ower_Thread::start] thread start error";}return true;
}void Ower_Thread::stop()
{running_ = false;
}bool Ower_Thread::isAlive()const
{return running_;
}void Ower_Thread::join() 
{if (th_->joinable()) {th_->join(); // 不是detach才去join } 
}void Ower_Thread::detach()
{ th_->detach(); 
}size_t Ower_Thread::CURRENT_THREADID()
{// 声明为thread_local的本地变量在线程中是持续存在的,不同于普通临时变量的生命周期, // 它具有static变量一样的初始化特征和生命周期,即使它不被声明为static。static thread_local size_t threadId = 0;if (threadId == 0){std::stringstream ss;ss << std::this_thread::get_id();threadId = strtol(ss.str().c_str(), NULL, 0);}return threadId;
}void Ower_Thread::threadEntry()
{running_ = true;try{run();}catch (std::exception &ex){running_ = false;throw ex;}catch (...){running_ = false;throw;}running_ = false;
}

test.cc

#include 
#include 
#include "ower_thread.h"using namespace std;class A:public Ower_Thread
{
public:void run(){while (running_){cout << "class A" << endl;this_thread::sleep_for(chrono::seconds(5));}cout << "----- leave class A " << endl;}};class B :public Ower_Thread
{
public:void run(){while (running_){cout << "class B" << endl;this_thread::sleep_for(chrono::seconds(2));}cout << "----- leave class B " << endl;}};int main()
{A a;a.start();B b;b.start();this_thread::sleep_for(chrono::seconds(5));a.stop();a.join(); // 需要我们自己joinb.stop();b.join(); // 需要我们自己joincout << "Hello World!" << endl;return 0;
}

编译:

g++ -o my_thread test.cc ower_thread.cc -lpthread -std=c++11

执行结果:

$ ./my_thread
class B
class A
class B
class B
class A
class B
class B
----- leave class A 
----- leave class B 
Hello World!
~Ower_Thread()
~Ower_Thread()

1.4、std::this_thread

此命名空间对一组访问当前线程的函数进行分组。

功能含义
get_id获取线程 ID(函数)
yield让出CPU
sleep_until睡眠到时间点(功能)
sleep_for睡眠时间跨度(功能)

1.4.1、std::this_thread::get_id()

功能:获取线程 ID。
返回:返回调用线程的线程 ID,此值唯一标识线程。成员类型的对象唯一标识线程thread::id。
示例:

// thread::get_id / this_thread::get_id
#include        // std::cout
#include          // std::thread, std::thread::id, std::this_thread::get_id
#include          // std::chrono::secondsstd::thread::id main_thread_id = std::this_thread::get_id();void is_main_thread() {if ( main_thread_id == std::this_thread::get_id() )std::cout << "This is the main thread.\n";elsestd::cout << "This is not the main thread.\n";
}int main() 
{is_main_thread();std::thread th (is_main_thread);th.join();
}

1.4.2、std::this_thread::yield()

调用线程生成,为实现提供了重新调度的机会。当线程等待其他线程前进而不阻塞时,应调用此函数。
示例:

// this_thread::yield example
#include        // std::cout
#include          // std::thread, std::this_thread::yield
#include          // std::atomicstd::atomic ready(false);void count1m(int id) {while (!ready) {             // wait until main() sets ready...std::this_thread::yield();}for (volatile int i = 0; i<1000000; ++i) {}std::cout << id;
}int main()
{std::thread threads[10];std::cout << "race of 10 threads that count to 1 million:\n";for (int i = 0; i<10; ++i) threads[i] = std::thread(count1m, i);ready = true;               // go!for (auto& th : threads) th.join();std::cout << '\n';return 0;
}

1.4.3、std::this_thread::sleep_for

阻止在指定的时间段内执行调用线程。
当前线程的执行将停止,直到至少从现在开始。其他线程继续执行。

参数:
调用线程恢复执行的时间跨度。请注意,多线程管理操作可能会导致超出此范围的某些延迟。是表示特定相对时间的对象。

示例:

#include        // std::cout, std::endl
#include          // std::this_thread::sleep_for
#include          // std::chrono::secondsint main() 
{std::cout << "countdown:\n";for (int i=10; i>0; --i) {std::cout << i << std::endl;std::this_thread::sleep_for (std::chrono::seconds(1));}std::cout << "Lift off!\n";return 0;
}

总结

编译时需要添加lpthread库。

后言

本专栏知识点是通过<零声教育>的系统学习,进行梳理总结写下文章,对c/c++linux系统提升感兴趣的读者,可以点击链接,详细查看详细的服务:C/C++服务器课程

相关内容

热门资讯

【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...
【2023-03-22】SRS... 【2023-03-22】SRS推流搭配FFmpeg实现目标检测 说明: 外侧测试使用SRS播放器测...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
初级算法-哈希表 主要记录算法和数据结构学习笔记,新的一年更上一层楼! 初级算法-哈希表...
进程间通信【Linux】 1. 进程间通信 1.1 什么是进程间通信 在 Linux 系统中,进程间通信...
【Docker】P3 Dock... Docker数据卷、宿主机与挂载数据卷的概念及作用挂载宿主机配置数据卷挂载操作示例一个容器挂载多个目...