MVSNet服务器环境配置及测试
admin
2024-02-16 01:28:47
0

一. 环境配置

1. 安装Anaconda

最新版即可,详见:配置深度学习环境(Linux服务器)

2. 创建conda环境

conda create -n MVSNet python=3.7

激活环境

conda activate MVSNet

3. 在conda中安装Pytorch

根据CUDA版本在pytorch官网中找到对应的下载(我的CUDA是11.4)

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

Pytorch版本一定要和cuda对应,不要直接粘贴上文,否则有问题!

4. 安装各种包

安装OpenCV

pip install opencv_python==3.4.2.17
pip install opencv-contrib-python==3.4.2.17

安装tensorboard

pip install protobuf==3.19.1
pip install tensorboardX==1.8
pip install tensorboard==1.14.0

如果还缺什么,就装什么。

至此,环境就配好了!

二. 测试

自己写的测试代码,随机生成图像和内外参,可以快速测试代码并学习网络,也可以用train.sh进行全面测试。

python temp.py --numdepth=192
import argparse
import torch
import torch.backends.cudnn as cudnn
from models import *
from utils import *cudnn.benchmark = Trueparser = argparse.ArgumentParser(description='A PyTorch Implementation of MVSNet')
parser.add_argument('--model', default='mvsnet', help='select model')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
# 训练中采用了动态调整学习率的策略,在第10,12,14轮训练的时候,让learning_rate除以2变为更小的学习率
parser.add_argument('--lrepochs', type=str, default="10,12,14:2", help='epoch ids to downscale lr and the downscale rate')
#  weight decay策略,作为Adam优化器超参数,实现中并未使用
parser.add_argument('--wd', type=float, default=0.0, help='weight decay')
#parser.add_argument('--batch_size', type=int, default=12, help='train batch size')
# 深度假设数量,一共假设这么多种不同的深度,在里面找某个像素的最优深度
parser.add_argument('--numdepth', type=int, default=192, help='the number of depth values')
# 深度假设间隔缩放因子,每隔interval假设一个新的深度,这个interval要乘以这个scale
parser.add_argument('--interval_scale', type=float, default=1.06, help='the number of depth values')model = MVSNet(refine=False).cuda()with torch.no_grad():imgs = torch.rand((4, 3, 3, 512, 640)).cuda()proj_matrices = torch.rand((4, 3, 4, 4)).cuda()depth_values = torch.rand((4, 192)).cuda()model(imgs, proj_matrices, depth_values)

一点心得1:网上有很多博主写了配环境的帖子,参考之后我并没有配置成功,猜测可能是因为服务器等客观因素吧。只能说,每个博主至少在自己机子上是可以运行的,包括我这篇,但不代表你就能成功!建议大家直接先在自己配好的环境里跑一下试试(有项目可以直接成功运行的环境),没准大力就出奇迹了!!!

一点心得2:阅读原码的时候,千万别手抖,删了什么或者加了空格,一旦原码报错,还找不到问问题,简直怀疑人生!!!

相关内容

热门资讯

【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...
【2023-03-22】SRS... 【2023-03-22】SRS推流搭配FFmpeg实现目标检测 说明: 外侧测试使用SRS播放器测...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
初级算法-哈希表 主要记录算法和数据结构学习笔记,新的一年更上一层楼! 初级算法-哈希表...
进程间通信【Linux】 1. 进程间通信 1.1 什么是进程间通信 在 Linux 系统中,进程间通信...
【Docker】P3 Dock... Docker数据卷、宿主机与挂载数据卷的概念及作用挂载宿主机配置数据卷挂载操作示例一个容器挂载多个目...