柯西中值定理
设x1x2>0x_1x_2>0x1x2>0,证明:在x1x_1x1和x2x_2x2之间存在一点ξ\xiξ,使得:
x1ex2−x2ex1=(1−ξ)eξ(x1−x2)x_1e^{x_2}-x^2e^{x_1}=(1-\xi)e^{\xi}(x_1-x_2)x1ex2−x2ex1=(1−ξ)eξ(x1−x2)
解:
\qquad令f(x)=1xex,g(x)=1xf(x)=\dfrac 1x e^x,g(x)=\dfrac 1xf(x)=x1ex,g(x)=x1
∵x1x2>0\qquad \because x_1x_2>0∵x1x2>0
∴x1,x2\qquad \therefore x_1,x_2∴x1,x2同号,g′(x)=−1x2≠0g'(x)=-\dfrac{1}{x^2} \neq 0g′(x)=−x21=0
∵f(x),g(x)\qquad \because f(x),g(x)∵f(x),g(x)在x1,x2x_1,x_2x1,x2之间的闭区间内连续,在x1,x2x_1,x_2x1,x2之间的开区间内可导
\qquad且g′(x)≠0g'(x)\neq 0g′(x)=0
∴\qquad \therefore∴在x1x_1x1和x2x_2x2之间存在一点ξ\xiξ,使得f(x2)−f(x1)g(x2)−g(x1)=f′(ξ)g′(ξ)\dfrac{f(x_2)-f(x_1)}{g(x_2)-g(x_1)}=\dfrac{f'(\xi)}{g'(\xi)}g(x2)−g(x1)f(x2)−f(x1)=g′(ξ)f′(ξ)
\qquad即1x2ex2−1x1ex11x2−1x1=−1ξ2eξ+1ξeξ−1ξ2\dfrac{\frac{1}{x_2}e^{x_2}-\frac{1}{x_1}e^{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=\dfrac{-\frac{1}{\xi^2}e^\xi+\frac{1}{\xi}e^\xi}{-\frac{1}{\xi^2}}x21−x11x21ex2−x11ex1=−ξ21−ξ21eξ+ξ1eξ
\qquad化简得x1ex2−x2ex1=(1−ξ)eξ(x1−x2)x_1e^{x_2}-x^2e^{x_1}=(1-\xi)e^{\xi}(x_1-x_2)x1ex2−x2ex1=(1−ξ)eξ(x1−x2)
\qquad得证在x1x_1x1和x2x_2x2之间存在一点ξ\xiξ,使得x1ex2−x2ex1=(1−ξ)eξ(x1−x2)x_1e^{x_2}-x^2e^{x_1}=(1-\xi)e^{\xi}(x_1-x_2)x1ex2−x2ex1=(1−ξ)eξ(x1−x2)
下一篇:数据库编程