【ICPC2022济南站】【树形dp】【删物品背包dp】C.DFS Order 2
admin
2024-04-15 08:56:30
0

【题意】

题目链接:https://codeforces.com/gym/104076/problem/C
简要题意:给定一棵n个点的有根树,对于所有的二元组(i,j)(i,j)(i,j)求这颗树所有可能的dfs序中有多少个dfs序满足第iii个点出现在dfs序第jjj个位置。

【思路】

赛场上假了无数次以后,我终于才理清楚了这题的dp思路。
状态定义:
定义dp[u][i]dp[u][i]dp[u][i]表示只考虑uuu子树外的点的情况下,dfs序中在uuu前面有iii个点的方案数。注意,这个dpdpdp值并不能直接作为答案,还要乘上uuu子树内部的所有可能的dfs序方案数。显然这个dpdpdp的取值与uuu子树的情况无关,因此这道题dpdpdp的转移与一般树形dpdpdp不同,这道题应当自上而下用父亲的信息更新儿子的信息。上文提到过,为了得到答案,我们还需要uuu子树内部的dfs序方案数量,因此定义dp2[u]dp2[u]dp2[u]表示uuu子树内的dfs序方案数。
状态转移
设我们当前在uuu点,我们考虑更新uuu的一个儿子vvv的dpdpdp信息,我们需要知道dfs序有多少个点在vvv前面,我们把这些点分为在uuu的子树内和uuu的子树外两类,最后类似背包的思路合并即可。

  • 对于uuu子树外的点的信息,我们通过uuu的dpdpdp值即可获得;
  • 对于uuu子树内的点,在vvv前面的点的数量取决于uuu的儿子们的排列顺序,我们可以把u的所有儿子的子树大小sizsizsiz拿来做一次背包,与一般背包不同的是,后续用背包的结果更新dp值时还需要考虑放置顺序,因此我们还需要加一维表示当前背包的大小,便于考虑物品顺序。设c[i][j]c[i][j]c[i][j]表示放置了iii个物品,总大小为jjj的方案数,考虑放置子树vvv,则转移显然:c[i][j]=c′[i][j]+c′[i−1][j−siz[v]]c[i][j]=c'[i][j]+c'[i-1][j-siz[v]]c[i][j]=c′[i][j]+c′[i−1][j−siz[v]]
    c′c'c′表示未考虑vvv的dp值,ccc表示已考虑vvv的dp值,因此iii这一维倒序枚举更新即可不需要额外的数组。若我们要求vvv的dp值,则我们背包里需要删除vvv这个物品。由于背包dp的本质是一种多项式的卷积(此处的dp等价于c(y,x)=∏v∈sonu(1+y∗xsiz[v])c(y,x)=\prod_{v\in son_u}(1+y*x^{siz[v]})c(y,x)=∏v∈sonu​​(1+y∗xsiz[v])),放置顺序无关紧要,我们不妨假设vvv是最后一个加入背包的物品。此时相当于我们已知c数组而需要求c′c'c′数组(注意,这里的c′c'c′数组在参考代码里就是ddd数组)。移项可得转移:
    c′[i][j]=c[i][j]−c′[i−1][j−siz[v]]c'[i][j]=c[i][j]-c'[i-1][j-siz[v]]c′[i][j]=c[i][j]−c′[i−1][j−siz[v]]
    在得到c′c'c′数组后,设在vvv前面有jjj个uuu子树内的点的方案数为b[j]b[j]b[j],uuu一共有cntcntcnt个儿子,则有转移:
    b[j]=∑i=0cnt−1c′[i][j]∗i!∗(cnt−1−i)!b[j]=\sum_{i=0}^{cnt-1} c'[i][j]*i!*(cnt-1-i)!b[j]=i=0∑cnt−1​c′[i][j]∗i!∗(cnt−1−i)!
    而对于uuu这个点,它在dfs序中一定位于其他uuu子树内的点的前面,我们可以在设置ccc数组初值时考虑它,即:c[0][1]=1c[0][1]=1c[0][1]=1。
  • 现在,我们已知bbb数组和dpdpdp数组,考虑用背包dp的思路对它们进行合并。但是我们目前仅考虑了u的儿子之间的排列顺序,尚未考虑这些儿子子树内的排序方案。设B=∏x∈sonudp2[x]B=\prod_{x\in son_u}dp2[x]B=∏x∈sonu​​dp2[x]。当我们用这些信息去更新vvv的dp值时,需要注意除去常数B中和vvv子树有关的信息。诚然,不除去这部分信息的话,我们直接得到的就是vvv的答案数组,但是这并不利于我们进一步dfs求v的子树的dp信息,因此我们在这里的处理是除去这部分信息。即定义C=∏x∈sonu,x≠v=Bdp2[v]C=\prod_{x\in son_u,x\neq v}=\frac B {dp2[v]}C=∏x∈sonu​,x​=v​=dp2[v]B​,有以下转移:
    对于i∈[1,n],dp[v][i]=C∗∑j=0siz[u]b[j]∗dp[u][i−j]对于i\in [1,n],dp[v][i]=C*\sum_{j=0}^{siz[u]}b[j]*dp[u][i-j]对于i∈[1,n],dp[v][i]=C∗j=0∑siz[u]​b[j]∗dp[u][i−j]
    (jjj的上确界是小于siz[u]siz[u]siz[u]的,比赛时为了求稳所以定枚举上界为siz[u]siz[u]siz[u])

而对于dp2数组,我们需要在处理dp数组前就提前dfs一次先得到它。设uuu总共有cntcntcnt个儿子,考虑uuu子树内所有可能的dfs序,转移显然:
dp2[u]=cnt!∗∏dp2[v]dp2[u]=cnt!*\prod dp2[v]dp2[u]=cnt!∗∏dp2[v]
此时,第iii个点出现在dfs序中第jjj个位置的方案数就是dp[i][j−1]∗dp2[i]dp[i][j-1]*dp2[i]dp[i][j−1]∗dp2[i]。
参考代码:(比赛时写的代码)

#include
#define ll long long
using namespace std;
const int N=505,mod=998244353;
int n,dp[N][N],siz[N],c[N][N],d[N][N],b[N],fac[N],dp2[N];
vectorg[N];
void Add(int&x,int y){((x+=y)>=mod)&&(x-=mod);
}
inline int mul(int x,int y){return 1ll*x*y%mod;
}
inline int dec(int x,int y){return xint ret=1;while(b){if(b&1)ret=mul(ret,a);a=mul(a,a);b>>=1;}return ret;
}
void dfs1(int u,int fa){siz[u]=1;dp2[u]=1;int cnt=0;for(int v:g[u]){if(v==fa)continue;cnt++;dfs1(v,u);siz[u]+=siz[v];dp2[u]=mul(dp2[u],dp2[v]);}dp2[u]=mul(dp2[u],fac[cnt]);
}
void dfs2(int u,int fa){int cnt=0,sum=1;memset(c,0,sizeof c);c[0][1]=1;int lsr=1;for(int v:g[u]){if(v==fa)continue;cnt++;sum+=siz[v];lsr=mul(lsr,dp2[v]);for(int i=cnt;i>=1;i--)for(int j=sum;j>=siz[v];j--)Add(c[i][j],c[i-1][j-siz[v]]);}for(int v:g[u]){if(v==fa)continue;memset(d,0,sizeof d);for(int i=0;i<=cnt;i++)for(int j=0;j<=siz[u];j++)d[i][j]=dec(c[i][j],(j>=siz[v]&&i>0)?d[i-1][j-siz[v]]:0);memset(b,0,sizeof b);for(int i=0;iif(v!=fa)dfs2(v,u);}
}
int main()
{scanf("%d",&n);fac[0]=1;for(int i=1;i<=n;i++)fac[i]=mul(fac[i-1],i);for(int i=2;i<=n;i++){int u,v;scanf("%d%d",&u,&v);g[u].push_back(v);g[v].push_back(u);}dp[1][0]=1;dfs1(1,0);dfs2(1,0);for(int i=1;i<=n;i++){for(int j=0;j

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...