两百行C++代码实现yolov5车辆计数部署(通俗易懂版)
创始人
2024-04-21 12:26:56
0

这周用opencv简单实现了一下基于yolov5检测器的单向车辆计数功能,方法是撞线计数,代码很简单一共就两百多行,测试视频是在b站随便下载的。注:该代码只能演示视频demo效果,一些功能未完善,离实际工程应用还有距离。
实现流程:
(1)训练yolov5模型,这里就没有自己训练了,直接使用官方的开源模型yolov5s.pt;
(2)运行yolov5工程下面的export.py,将pt模型转成onnx模型;
(3)编写yolov5部署的C++工程,包括前处理、推理和后处理部分;
(4)读取视频第一帧,用yolov5检测第一帧图像的车辆目标,计算这些检测框的中心点,
(5)读取视频的后续帧,用yolov5检测每帧图像上的车辆目标,计算新目标和上一帧图像中检测框中心点的距离矩阵;
(6)通过距离矩阵确定新旧目标检测框之间的对应关系;
(7)计算对应新旧目标检测框中心点之间的连线,判断和事先设置的虚拟撞线是否相交,若相交则计数加1;
(8)重复(5)-(7)。
实际实现的时候采取的是隔帧判断而不是使用相邻帧,v1的代码实现如下:

#include 
#include 
#include // 常量
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.45;
const float CONFIDENCE_THRESHOLD = 0.45;const std::vector class_name = {
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush" };// 画框函数
void draw_label(cv::Mat& input_image, std::string label, int left, int top)
{int baseLine;cv::Size label_size = cv::getTextSize(label, 0.7, 0.7, 1, &baseLine);top = std::max(top, label_size.height);cv::Point tlc = cv::Point(left, top);cv::Point brc = cv::Point(left , top + label_size.height + baseLine);cv::putText(input_image, label, cv::Point(left, top + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);
}// 预处理
std::vector preprocess(cv::Mat& input_image, cv::dnn::Net& net)
{cv::Mat blob;cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);net.setInput(blob);std::vector preprcess_image;net.forward(preprcess_image, net.getUnconnectedOutLayersNames());return preprcess_image;
}// 后处理
std::vector postprocess(std::vector& preprcess_image, cv::Mat& output_image)
{std::vector class_ids;std::vector confidences;std::vector boxes;std::vector boxes_nms;float x_factor = output_image.cols / INPUT_WIDTH;float y_factor = output_image.rows / INPUT_HEIGHT;float* data = (float*)preprcess_image[0].data;const int dimensions = 85;const int rows = 25200;for (int i = 0; i < rows; ++i){float confidence = data[4];if (confidence >= CONFIDENCE_THRESHOLD){float* classes_scores = data + 5;cv::Mat scores(1, class_name.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > SCORE_THRESHOLD){confidences.push_back(confidence);class_ids.push_back(class_id.x);float cx = data[0];float cy = data[1];float w = data[2];float h = data[3];int left = int((cx - 0.5 * w) * x_factor);int top = int((cy - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}data += 85;}std::vector indices;cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);for (size_t i = 0; i < indices.size(); i++){int idx = indices[i];cv::Rect box = boxes[idx];boxes_nms.push_back(box);int left = box.x;int top = box.y;int width = box.width;int height = box.height;cv::rectangle(output_image, cv::Point(left, top), cv::Point(left + width, top + height), cv::Scalar(255, 0, 0), 1);std::string label = cv::format("%.2f", confidences[idx]);label = class_name[class_ids[idx]] + ":" + label;draw_label(output_image, label, left, top);}return boxes_nms;
}std::vector get_center(std::vector detections)
{std::vector detections_center(detections.size());for (size_t i = 0; i < detections.size(); i++){detections_center[i] = cv::Point(detections[i].x + detections[i].width / 2, detections[i].y + detections[i].height / 2);}return detections_center;
}float get_distance(cv::Point p1, cv::Point p2)
{return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}bool is_cross(cv::Point p1, cv::Point p2)
{if (p1.x == p2.x) return false;int y = 500;  //line1: y = 500float k = (p1.y - p2.y) / (p1.x - p2.x);  //float b = p1.y - k * p1.x; //line2: y = kx + bfloat x = (y - b) / k;return (x > std::min(p1.x, p2.x) && x < std::max(p1.x, p2.x));
}int main(int argc, char** argv)
{cv::VideoCapture capture("test.mp4");cv::Mat frame;cv::dnn::Net net = cv::dnn::readNet("yolov5s-f32.onnx");int frame_num = 0;int count = 0;std::vector detections_center_old;std::vector detections_center_new;while(cv::waitKey(1) < 0){capture >> frame;if (frame.empty())break;std::cout << "******************************************************************* frame_num: " << frame_num << std::endl;cv::Mat image = frame.clone();std::vector preprcess_image = preprocess(image, net);std::vector detections = postprocess(preprcess_image, image);if (frame_num == 0){detections_center_old = get_center(detections);std::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_old.size(); i++){std::cout << detections_center_old[i] << std::endl;}}else if (frame_num % 2 == 0){detections_center_new = get_center(detections);std::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){std::cout << detections_center_new[i] << std::endl;}std::vector> distance_matrix(detections_center_new.size(), std::vector(detections_center_old.size()));std::cout << "distance_matrix:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){for (size_t j = 0; j < detections_center_old.size(); j++){distance_matrix[i][j] = get_distance(detections_center_new[i], detections_center_old[j]); //std::cout << distance_matrix[i][j] << " ";}std::cout << std::endl;}std::cout << "min_index:" << std::endl;std::vector min_indices(detections_center_new.size());for (size_t i = 0; i < detections_center_new.size(); i++){std::vector distance_vector = distance_matrix[i];int min_index = std::min_element(distance_vector.begin(), distance_vector.end()) - distance_vector.begin();min_indices[i] = min_index;std::cout << min_index << " ";}std::cout << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){cv::Point p1 = detections_center_new[i];cv::Point p2 = detections_center_old[min_indices[i]];std::cout << p1 << " " << p2 << std::endl;if (is_cross(p1, p2)){std::cout << "is_cross" << p1 << " " << p2 << std::endl;count++;}}detections_center_old = detections_center_new;}frame_num++;cv::putText(image, "car num: " + std::to_string(count), cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);cv::line(image, cv::Point(0, 500), cv::Point(1280, 500) , cv::Scalar(0, 0, 255));cv::imshow("output", image);cv::imwrite(std::to_string(frame_num) + ".jpg", image);}capture.release();return 0;
}

在调试中,发现v1的实现存在如下问题:出现新目标的时候,计算新旧检测框的对应关系出现匹配错误,导致计数偏多。因此在v2中设置匹配的距离阈值,并简化了判断检测框中心点连线和撞线是否相交的方法。
v2的代码实现如下:

#include 
#include #define DEBUG// 常量
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.25;
const float CONFIDENCE_THRESHOLD = 0.5;const std::vector class_name = {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light","fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow","elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard","tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple","sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch","potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone","microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear","hair drier", "toothbrush" };const int IMAGE_WIDTH = 1280;
const int IMAGE_HEIGHT = 720;
const int LINE_HEIGHT = IMAGE_HEIGHT / 2;//画出检测框和标签
void draw_label(cv::Mat& input_image, std::string label, int left, int top)
{int baseLine;cv::Size label_size = cv::getTextSize(label, 0.7, 0.7, 1, &baseLine);top = std::max(top, label_size.height);cv::Point tlc = cv::Point(left, top);cv::Point brc = cv::Point(left , top + label_size.height + baseLine);cv::putText(input_image, label, cv::Point(left, top + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);
}//预处理
std::vector preprocess(cv::Mat& input_image, cv::dnn::Net& net)
{cv::Mat blob;cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);net.setInput(blob);std::vector preprcess_image;net.forward(preprcess_image, net.getUnconnectedOutLayersNames());return preprcess_image;
}//后处理
std::vector postprocess(std::vector& preprcess_image, cv::Mat& output_image)
{std::vector class_ids;std::vector confidences;std::vector boxes;std::vector boxes_nms;float x_factor = output_image.cols / INPUT_WIDTH;float y_factor = output_image.rows / INPUT_HEIGHT;float* data = (float*)preprcess_image[0].data;const int dimensions = 85;const int rows = 25200;for (int i = 0; i < rows; ++i){float confidence = data[4];if (confidence >= CONFIDENCE_THRESHOLD){float* classes_scores = data + 5;cv::Mat scores(1, class_name.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > SCORE_THRESHOLD){confidences.push_back(confidence);class_ids.push_back(class_id.x);float cx = data[0];float cy = data[1];float w = data[2];float h = data[3];int left = int((cx - 0.5 * w) * x_factor);int top = int((cy - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}data += 85;}std::vector indices;cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);for (size_t i = 0; i < indices.size(); i++){int idx = indices[i];cv::Rect box = boxes[idx];boxes_nms.push_back(box);int left = box.x;int top = box.y;int width = box.width;int height = box.height;cv::rectangle(output_image, cv::Point(left, top), cv::Point(left + width, top + height), cv::Scalar(255, 0, 0), 1);std::string label = cv::format("%.2f", confidences[idx]);//label = class_name[class_ids[idx]] + ":" + label;label = "car";draw_label(output_image, label, left, top);}return boxes_nms;
}//计算检测框的中心
std::vector get_center(std::vector detections)
{std::vector detections_center(detections.size());for (size_t i = 0; i < detections.size(); i++){detections_center[i] = cv::Point(detections[i].x + detections[i].width / 2, detections[i].y + detections[i].height / 2);}return detections_center;
}//计算两点间距离
float get_distance(cv::Point p1, cv::Point p2)
{return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}//判断连接相邻两帧对应检测框中心的线段是否与红线相交
bool is_cross(cv::Point p1, cv::Point p2)
{return (p1.y <= LINE_HEIGHT && p2.y > LINE_HEIGHT) || (p1.y > LINE_HEIGHT && p2.y <= LINE_HEIGHT);
}int main(int argc, char** argv)
{cv::VideoCapture capture("test.mp4");cv::Mat frame;cv::dnn::Net net = cv::dnn::readNet("yolov5s-f32.onnx");int frame_num = 0;int count = 0;std::vector detections_center_old;std::vector detections_center_new;while(cv::waitKey(1) < 0){capture >> frame;if (frame.empty())break;std::cout << "******************************************************************* frame_num: " << frame_num << std::endl;cv::Mat image = frame.clone();std::vector preprcess_image = preprocess(image, net);std::vector detections = postprocess(preprcess_image, image);if (frame_num == 0){detections_center_old = get_center(detections);#ifdef DEBUGstd::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_old.size(); i++){std::cout << detections_center_old[i] << std::endl;}
#endif // DEBUG}else if (frame_num % 2 == 0){detections_center_new = get_center(detections);#ifdef DEBUGstd::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){std::cout << detections_center_new[i] << std::endl;}
#endif // DEBUGstd::vector> distance_matrix(detections_center_new.size(), std::vector(detections_center_old.size())); //距离矩阵for (size_t i = 0; i < detections_center_new.size(); i++){for (size_t j = 0; j < detections_center_old.size(); j++){distance_matrix[i][j] = get_distance(detections_center_new[i], detections_center_old[j]); }}#ifdef DEBUGstd::cout << "min_index:" << std::endl;
#endif // DEBUGstd::vector min_indices(detections_center_new.size());for (size_t i = 0; i < detections_center_new.size(); i++){std::vector distance_vector = distance_matrix[i];float min_val = *std::min_element(distance_vector.begin(), distance_vector.end());int min_index = -1;if (min_val < LINE_HEIGHT / 5)min_index = std::min_element(distance_vector.begin(), distance_vector.end()) - distance_vector.begin();min_indices[i] = min_index;
#ifdef DEBUGstd::cout << min_index << " ";
#endif // DEBUG}std::cout << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){if (min_indices[i] < 0)continue;cv::Point p1 = detections_center_new[i];cv::Point p2 = detections_center_old[min_indices[i]];#ifdef DEBUGstd::cout << p1 << " " << p2 << std::endl;
#endif // DEBUGif (is_cross(p1, p2)){
#ifdef DEBUGstd::cout << "is_cross" << p1 << " " << p2 << std::endl;
#endif // DEBUGcount++;}}detections_center_old = detections_center_new;}cv::putText(image, "car num: " + std::to_string(count), cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 255), 1);cv::line(image, cv::Point(0, LINE_HEIGHT), cv::Point(IMAGE_WIDTH, LINE_HEIGHT), cv::Scalar(0, 0, 255));cv::imshow("output", image);#ifdef DEBUGif (frame_num % 2 == 0)cv::imwrite(std::to_string(frame_num) + ".jpg", image);
#endif // DEBUGframe_num++;}capture.release();return 0;
}

检测效果实现如下,效果还是可以的。完整视频中有一次计数异常,是因为检测器不准导致车辆检测框位置漂移,可以后续优化。注:由于官方提供的coco80类的开源权重文件用于车辆检测效果不是很好,LZ把检测出的类别直接固定为car,实际应自己重新训练一个车辆检测的模型。
在这里插入图片描述

代码、测试视频和转好的权重文件放在下载链接:点击跳转

相关内容

热门资讯

【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...
【2023-03-22】SRS... 【2023-03-22】SRS推流搭配FFmpeg实现目标检测 说明: 外侧测试使用SRS播放器测...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
初级算法-哈希表 主要记录算法和数据结构学习笔记,新的一年更上一层楼! 初级算法-哈希表...
进程间通信【Linux】 1. 进程间通信 1.1 什么是进程间通信 在 Linux 系统中,进程间通信...
【Docker】P3 Dock... Docker数据卷、宿主机与挂载数据卷的概念及作用挂载宿主机配置数据卷挂载操作示例一个容器挂载多个目...