两百行C++代码实现yolov5车辆计数部署(通俗易懂版)
创始人
2024-04-21 12:26:56
0

这周用opencv简单实现了一下基于yolov5检测器的单向车辆计数功能,方法是撞线计数,代码很简单一共就两百多行,测试视频是在b站随便下载的。注:该代码只能演示视频demo效果,一些功能未完善,离实际工程应用还有距离。
实现流程:
(1)训练yolov5模型,这里就没有自己训练了,直接使用官方的开源模型yolov5s.pt;
(2)运行yolov5工程下面的export.py,将pt模型转成onnx模型;
(3)编写yolov5部署的C++工程,包括前处理、推理和后处理部分;
(4)读取视频第一帧,用yolov5检测第一帧图像的车辆目标,计算这些检测框的中心点,
(5)读取视频的后续帧,用yolov5检测每帧图像上的车辆目标,计算新目标和上一帧图像中检测框中心点的距离矩阵;
(6)通过距离矩阵确定新旧目标检测框之间的对应关系;
(7)计算对应新旧目标检测框中心点之间的连线,判断和事先设置的虚拟撞线是否相交,若相交则计数加1;
(8)重复(5)-(7)。
实际实现的时候采取的是隔帧判断而不是使用相邻帧,v1的代码实现如下:

#include 
#include 
#include // 常量
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.45;
const float CONFIDENCE_THRESHOLD = 0.45;const std::vector class_name = {
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush" };// 画框函数
void draw_label(cv::Mat& input_image, std::string label, int left, int top)
{int baseLine;cv::Size label_size = cv::getTextSize(label, 0.7, 0.7, 1, &baseLine);top = std::max(top, label_size.height);cv::Point tlc = cv::Point(left, top);cv::Point brc = cv::Point(left , top + label_size.height + baseLine);cv::putText(input_image, label, cv::Point(left, top + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);
}// 预处理
std::vector preprocess(cv::Mat& input_image, cv::dnn::Net& net)
{cv::Mat blob;cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);net.setInput(blob);std::vector preprcess_image;net.forward(preprcess_image, net.getUnconnectedOutLayersNames());return preprcess_image;
}// 后处理
std::vector postprocess(std::vector& preprcess_image, cv::Mat& output_image)
{std::vector class_ids;std::vector confidences;std::vector boxes;std::vector boxes_nms;float x_factor = output_image.cols / INPUT_WIDTH;float y_factor = output_image.rows / INPUT_HEIGHT;float* data = (float*)preprcess_image[0].data;const int dimensions = 85;const int rows = 25200;for (int i = 0; i < rows; ++i){float confidence = data[4];if (confidence >= CONFIDENCE_THRESHOLD){float* classes_scores = data + 5;cv::Mat scores(1, class_name.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > SCORE_THRESHOLD){confidences.push_back(confidence);class_ids.push_back(class_id.x);float cx = data[0];float cy = data[1];float w = data[2];float h = data[3];int left = int((cx - 0.5 * w) * x_factor);int top = int((cy - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}data += 85;}std::vector indices;cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);for (size_t i = 0; i < indices.size(); i++){int idx = indices[i];cv::Rect box = boxes[idx];boxes_nms.push_back(box);int left = box.x;int top = box.y;int width = box.width;int height = box.height;cv::rectangle(output_image, cv::Point(left, top), cv::Point(left + width, top + height), cv::Scalar(255, 0, 0), 1);std::string label = cv::format("%.2f", confidences[idx]);label = class_name[class_ids[idx]] + ":" + label;draw_label(output_image, label, left, top);}return boxes_nms;
}std::vector get_center(std::vector detections)
{std::vector detections_center(detections.size());for (size_t i = 0; i < detections.size(); i++){detections_center[i] = cv::Point(detections[i].x + detections[i].width / 2, detections[i].y + detections[i].height / 2);}return detections_center;
}float get_distance(cv::Point p1, cv::Point p2)
{return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}bool is_cross(cv::Point p1, cv::Point p2)
{if (p1.x == p2.x) return false;int y = 500;  //line1: y = 500float k = (p1.y - p2.y) / (p1.x - p2.x);  //float b = p1.y - k * p1.x; //line2: y = kx + bfloat x = (y - b) / k;return (x > std::min(p1.x, p2.x) && x < std::max(p1.x, p2.x));
}int main(int argc, char** argv)
{cv::VideoCapture capture("test.mp4");cv::Mat frame;cv::dnn::Net net = cv::dnn::readNet("yolov5s-f32.onnx");int frame_num = 0;int count = 0;std::vector detections_center_old;std::vector detections_center_new;while(cv::waitKey(1) < 0){capture >> frame;if (frame.empty())break;std::cout << "******************************************************************* frame_num: " << frame_num << std::endl;cv::Mat image = frame.clone();std::vector preprcess_image = preprocess(image, net);std::vector detections = postprocess(preprcess_image, image);if (frame_num == 0){detections_center_old = get_center(detections);std::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_old.size(); i++){std::cout << detections_center_old[i] << std::endl;}}else if (frame_num % 2 == 0){detections_center_new = get_center(detections);std::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){std::cout << detections_center_new[i] << std::endl;}std::vector> distance_matrix(detections_center_new.size(), std::vector(detections_center_old.size()));std::cout << "distance_matrix:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){for (size_t j = 0; j < detections_center_old.size(); j++){distance_matrix[i][j] = get_distance(detections_center_new[i], detections_center_old[j]); //std::cout << distance_matrix[i][j] << " ";}std::cout << std::endl;}std::cout << "min_index:" << std::endl;std::vector min_indices(detections_center_new.size());for (size_t i = 0; i < detections_center_new.size(); i++){std::vector distance_vector = distance_matrix[i];int min_index = std::min_element(distance_vector.begin(), distance_vector.end()) - distance_vector.begin();min_indices[i] = min_index;std::cout << min_index << " ";}std::cout << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){cv::Point p1 = detections_center_new[i];cv::Point p2 = detections_center_old[min_indices[i]];std::cout << p1 << " " << p2 << std::endl;if (is_cross(p1, p2)){std::cout << "is_cross" << p1 << " " << p2 << std::endl;count++;}}detections_center_old = detections_center_new;}frame_num++;cv::putText(image, "car num: " + std::to_string(count), cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);cv::line(image, cv::Point(0, 500), cv::Point(1280, 500) , cv::Scalar(0, 0, 255));cv::imshow("output", image);cv::imwrite(std::to_string(frame_num) + ".jpg", image);}capture.release();return 0;
}

在调试中,发现v1的实现存在如下问题:出现新目标的时候,计算新旧检测框的对应关系出现匹配错误,导致计数偏多。因此在v2中设置匹配的距离阈值,并简化了判断检测框中心点连线和撞线是否相交的方法。
v2的代码实现如下:

#include 
#include #define DEBUG// 常量
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.25;
const float CONFIDENCE_THRESHOLD = 0.5;const std::vector class_name = {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light","fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow","elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard","tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple","sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch","potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone","microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear","hair drier", "toothbrush" };const int IMAGE_WIDTH = 1280;
const int IMAGE_HEIGHT = 720;
const int LINE_HEIGHT = IMAGE_HEIGHT / 2;//画出检测框和标签
void draw_label(cv::Mat& input_image, std::string label, int left, int top)
{int baseLine;cv::Size label_size = cv::getTextSize(label, 0.7, 0.7, 1, &baseLine);top = std::max(top, label_size.height);cv::Point tlc = cv::Point(left, top);cv::Point brc = cv::Point(left , top + label_size.height + baseLine);cv::putText(input_image, label, cv::Point(left, top + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);
}//预处理
std::vector preprocess(cv::Mat& input_image, cv::dnn::Net& net)
{cv::Mat blob;cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);net.setInput(blob);std::vector preprcess_image;net.forward(preprcess_image, net.getUnconnectedOutLayersNames());return preprcess_image;
}//后处理
std::vector postprocess(std::vector& preprcess_image, cv::Mat& output_image)
{std::vector class_ids;std::vector confidences;std::vector boxes;std::vector boxes_nms;float x_factor = output_image.cols / INPUT_WIDTH;float y_factor = output_image.rows / INPUT_HEIGHT;float* data = (float*)preprcess_image[0].data;const int dimensions = 85;const int rows = 25200;for (int i = 0; i < rows; ++i){float confidence = data[4];if (confidence >= CONFIDENCE_THRESHOLD){float* classes_scores = data + 5;cv::Mat scores(1, class_name.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > SCORE_THRESHOLD){confidences.push_back(confidence);class_ids.push_back(class_id.x);float cx = data[0];float cy = data[1];float w = data[2];float h = data[3];int left = int((cx - 0.5 * w) * x_factor);int top = int((cy - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}data += 85;}std::vector indices;cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);for (size_t i = 0; i < indices.size(); i++){int idx = indices[i];cv::Rect box = boxes[idx];boxes_nms.push_back(box);int left = box.x;int top = box.y;int width = box.width;int height = box.height;cv::rectangle(output_image, cv::Point(left, top), cv::Point(left + width, top + height), cv::Scalar(255, 0, 0), 1);std::string label = cv::format("%.2f", confidences[idx]);//label = class_name[class_ids[idx]] + ":" + label;label = "car";draw_label(output_image, label, left, top);}return boxes_nms;
}//计算检测框的中心
std::vector get_center(std::vector detections)
{std::vector detections_center(detections.size());for (size_t i = 0; i < detections.size(); i++){detections_center[i] = cv::Point(detections[i].x + detections[i].width / 2, detections[i].y + detections[i].height / 2);}return detections_center;
}//计算两点间距离
float get_distance(cv::Point p1, cv::Point p2)
{return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}//判断连接相邻两帧对应检测框中心的线段是否与红线相交
bool is_cross(cv::Point p1, cv::Point p2)
{return (p1.y <= LINE_HEIGHT && p2.y > LINE_HEIGHT) || (p1.y > LINE_HEIGHT && p2.y <= LINE_HEIGHT);
}int main(int argc, char** argv)
{cv::VideoCapture capture("test.mp4");cv::Mat frame;cv::dnn::Net net = cv::dnn::readNet("yolov5s-f32.onnx");int frame_num = 0;int count = 0;std::vector detections_center_old;std::vector detections_center_new;while(cv::waitKey(1) < 0){capture >> frame;if (frame.empty())break;std::cout << "******************************************************************* frame_num: " << frame_num << std::endl;cv::Mat image = frame.clone();std::vector preprcess_image = preprocess(image, net);std::vector detections = postprocess(preprcess_image, image);if (frame_num == 0){detections_center_old = get_center(detections);#ifdef DEBUGstd::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_old.size(); i++){std::cout << detections_center_old[i] << std::endl;}
#endif // DEBUG}else if (frame_num % 2 == 0){detections_center_new = get_center(detections);#ifdef DEBUGstd::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){std::cout << detections_center_new[i] << std::endl;}
#endif // DEBUGstd::vector> distance_matrix(detections_center_new.size(), std::vector(detections_center_old.size())); //距离矩阵for (size_t i = 0; i < detections_center_new.size(); i++){for (size_t j = 0; j < detections_center_old.size(); j++){distance_matrix[i][j] = get_distance(detections_center_new[i], detections_center_old[j]); }}#ifdef DEBUGstd::cout << "min_index:" << std::endl;
#endif // DEBUGstd::vector min_indices(detections_center_new.size());for (size_t i = 0; i < detections_center_new.size(); i++){std::vector distance_vector = distance_matrix[i];float min_val = *std::min_element(distance_vector.begin(), distance_vector.end());int min_index = -1;if (min_val < LINE_HEIGHT / 5)min_index = std::min_element(distance_vector.begin(), distance_vector.end()) - distance_vector.begin();min_indices[i] = min_index;
#ifdef DEBUGstd::cout << min_index << " ";
#endif // DEBUG}std::cout << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){if (min_indices[i] < 0)continue;cv::Point p1 = detections_center_new[i];cv::Point p2 = detections_center_old[min_indices[i]];#ifdef DEBUGstd::cout << p1 << " " << p2 << std::endl;
#endif // DEBUGif (is_cross(p1, p2)){
#ifdef DEBUGstd::cout << "is_cross" << p1 << " " << p2 << std::endl;
#endif // DEBUGcount++;}}detections_center_old = detections_center_new;}cv::putText(image, "car num: " + std::to_string(count), cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 255), 1);cv::line(image, cv::Point(0, LINE_HEIGHT), cv::Point(IMAGE_WIDTH, LINE_HEIGHT), cv::Scalar(0, 0, 255));cv::imshow("output", image);#ifdef DEBUGif (frame_num % 2 == 0)cv::imwrite(std::to_string(frame_num) + ".jpg", image);
#endif // DEBUGframe_num++;}capture.release();return 0;
}

检测效果实现如下,效果还是可以的。完整视频中有一次计数异常,是因为检测器不准导致车辆检测框位置漂移,可以后续优化。注:由于官方提供的coco80类的开源权重文件用于车辆检测效果不是很好,LZ把检测出的类别直接固定为car,实际应自己重新训练一个车辆检测的模型。
在这里插入图片描述

代码、测试视频和转好的权重文件放在下载链接:点击跳转

相关内容

热门资讯

安卓系统的如何测试软件,从入门... 你有没有想过,你的安卓手机里那些神奇的软件是怎么诞生的呢?它们可不是凭空出现的,而是经过一系列严格的...
小米8安卓系统版本,安卓系统版... 你有没有发现,手机更新换代的速度简直就像坐上了火箭呢?这不,小米8这款手机自从上市以来,就凭借着出色...
华为手机安卓系统7以上,创新体... 你有没有发现,最近华为手机越来越受欢迎了呢?尤其是那些搭载了安卓系统7.0及以上版本的机型,简直让人...
儿童英语免费安卓系统,儿童英语... 哇,亲爱的家长朋友们,你是否在为孩子的英语学习发愁呢?别担心,今天我要给你带来一个超级好消息——儿童...
ios系统切换安卓系统还原,还... 你有没有想过,有一天你的手机从iOS系统切换到了安卓系统,然后再从安卓系统回到iOS系统呢?这听起来...
灵焕3装安卓系统,引领智能新体... 你知道吗?最近手机圈里可是掀起了一股热潮,那就是灵焕3这款神器的安卓系统升级。没错,就是那个曾经以独...
安卓系统指南针软件,探索未知世... 手机里的指南针功能是不是让你在户外探险时倍感神奇?但你知道吗,安卓系统中的指南针软件可是大有学问呢!...
华为是不用安卓系统了吗,迈向自... 最近有个大新闻在科技圈里炸开了锅,那就是华为是不是不再使用安卓系统了?这可不是一个简单的问题,它涉及...
安卓系统热点开启失败,排查与解... 最近是不是你也遇到了安卓系统热点开启失败的小麻烦?别急,让我来给你详细说说这个让人头疼的问题,说不定...
小米max2系统安卓,安卓系统... 你有没有听说过小米Max2这款手机?它那超大的屏幕,简直就像是个移动的电脑屏幕,看视频、玩游戏,那叫...
电池健康怎么保持安卓系统,优化... 手机可是我们生活中不可或缺的好伙伴,而电池健康度就是它的生命力。你有没有发现,随着使用时间的增长,你...
安卓手机怎么调系统颜色,安卓手... 你有没有发现,你的安卓手机屏幕颜色突然变得不那么顺眼了?是不是也想给它换换“脸色”,让它看起来更有个...
安卓系统清粉哪个好,哪款清粉工... 手机用久了,是不是觉得卡得要命?别急,今天就来聊聊安卓系统清理垃圾哪个软件好。市面上清理工具那么多,...
华为被限制用安卓系统,挑战安卓... 你知道吗?最近科技圈可是炸开了锅!华为,这个我们耳熟能详的名字,竟然因为一些“小插曲”被限制了使用安...
安卓系统是不是外国,源自外国的... 你有没有想过,我们每天离不开的安卓系统,它是不是外国货呢?这个问题听起来可能有点奇怪,但确实很多人都...
安卓系统缺少文件下载,全面解析... 你有没有发现,用安卓手机的时候,有时候下载个文件真是让人头疼呢?别急,今天就来聊聊这个让人烦恼的小问...
kktv系统刷安卓系统怎么样,... 你有没有听说最近KKTV系统刷安卓系统的事情?这可是个热门话题呢!咱们一起来聊聊,看看这个新玩意儿到...
安卓系统连接电脑蓝牙,操作指南... 你有没有遇到过这种情况:手机里堆满了各种好用的应用,可就是想找个方便快捷的方式,把手机里的音乐、照片...
安卓车机11.0系统包,智能驾... 你有没有发现,最近你的安卓车机系统好像悄悄升级了呢?没错,就是那个安卓车机11.0系统包!这可不是一...
安卓系统最高到多少,从初代到最... 你有没有想过,你的安卓手机系统升级到哪一步了呢?是不是好奇安卓系统最高能到多少呢?别急,今天就来带你...