两百行C++代码实现yolov5车辆计数部署(通俗易懂版)
创始人
2024-04-21 12:26:56
0

这周用opencv简单实现了一下基于yolov5检测器的单向车辆计数功能,方法是撞线计数,代码很简单一共就两百多行,测试视频是在b站随便下载的。注:该代码只能演示视频demo效果,一些功能未完善,离实际工程应用还有距离。
实现流程:
(1)训练yolov5模型,这里就没有自己训练了,直接使用官方的开源模型yolov5s.pt;
(2)运行yolov5工程下面的export.py,将pt模型转成onnx模型;
(3)编写yolov5部署的C++工程,包括前处理、推理和后处理部分;
(4)读取视频第一帧,用yolov5检测第一帧图像的车辆目标,计算这些检测框的中心点,
(5)读取视频的后续帧,用yolov5检测每帧图像上的车辆目标,计算新目标和上一帧图像中检测框中心点的距离矩阵;
(6)通过距离矩阵确定新旧目标检测框之间的对应关系;
(7)计算对应新旧目标检测框中心点之间的连线,判断和事先设置的虚拟撞线是否相交,若相交则计数加1;
(8)重复(5)-(7)。
实际实现的时候采取的是隔帧判断而不是使用相邻帧,v1的代码实现如下:

#include 
#include 
#include // 常量
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.45;
const float CONFIDENCE_THRESHOLD = 0.45;const std::vector class_name = {
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush" };// 画框函数
void draw_label(cv::Mat& input_image, std::string label, int left, int top)
{int baseLine;cv::Size label_size = cv::getTextSize(label, 0.7, 0.7, 1, &baseLine);top = std::max(top, label_size.height);cv::Point tlc = cv::Point(left, top);cv::Point brc = cv::Point(left , top + label_size.height + baseLine);cv::putText(input_image, label, cv::Point(left, top + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);
}// 预处理
std::vector preprocess(cv::Mat& input_image, cv::dnn::Net& net)
{cv::Mat blob;cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);net.setInput(blob);std::vector preprcess_image;net.forward(preprcess_image, net.getUnconnectedOutLayersNames());return preprcess_image;
}// 后处理
std::vector postprocess(std::vector& preprcess_image, cv::Mat& output_image)
{std::vector class_ids;std::vector confidences;std::vector boxes;std::vector boxes_nms;float x_factor = output_image.cols / INPUT_WIDTH;float y_factor = output_image.rows / INPUT_HEIGHT;float* data = (float*)preprcess_image[0].data;const int dimensions = 85;const int rows = 25200;for (int i = 0; i < rows; ++i){float confidence = data[4];if (confidence >= CONFIDENCE_THRESHOLD){float* classes_scores = data + 5;cv::Mat scores(1, class_name.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > SCORE_THRESHOLD){confidences.push_back(confidence);class_ids.push_back(class_id.x);float cx = data[0];float cy = data[1];float w = data[2];float h = data[3];int left = int((cx - 0.5 * w) * x_factor);int top = int((cy - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}data += 85;}std::vector indices;cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);for (size_t i = 0; i < indices.size(); i++){int idx = indices[i];cv::Rect box = boxes[idx];boxes_nms.push_back(box);int left = box.x;int top = box.y;int width = box.width;int height = box.height;cv::rectangle(output_image, cv::Point(left, top), cv::Point(left + width, top + height), cv::Scalar(255, 0, 0), 1);std::string label = cv::format("%.2f", confidences[idx]);label = class_name[class_ids[idx]] + ":" + label;draw_label(output_image, label, left, top);}return boxes_nms;
}std::vector get_center(std::vector detections)
{std::vector detections_center(detections.size());for (size_t i = 0; i < detections.size(); i++){detections_center[i] = cv::Point(detections[i].x + detections[i].width / 2, detections[i].y + detections[i].height / 2);}return detections_center;
}float get_distance(cv::Point p1, cv::Point p2)
{return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}bool is_cross(cv::Point p1, cv::Point p2)
{if (p1.x == p2.x) return false;int y = 500;  //line1: y = 500float k = (p1.y - p2.y) / (p1.x - p2.x);  //float b = p1.y - k * p1.x; //line2: y = kx + bfloat x = (y - b) / k;return (x > std::min(p1.x, p2.x) && x < std::max(p1.x, p2.x));
}int main(int argc, char** argv)
{cv::VideoCapture capture("test.mp4");cv::Mat frame;cv::dnn::Net net = cv::dnn::readNet("yolov5s-f32.onnx");int frame_num = 0;int count = 0;std::vector detections_center_old;std::vector detections_center_new;while(cv::waitKey(1) < 0){capture >> frame;if (frame.empty())break;std::cout << "******************************************************************* frame_num: " << frame_num << std::endl;cv::Mat image = frame.clone();std::vector preprcess_image = preprocess(image, net);std::vector detections = postprocess(preprcess_image, image);if (frame_num == 0){detections_center_old = get_center(detections);std::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_old.size(); i++){std::cout << detections_center_old[i] << std::endl;}}else if (frame_num % 2 == 0){detections_center_new = get_center(detections);std::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){std::cout << detections_center_new[i] << std::endl;}std::vector> distance_matrix(detections_center_new.size(), std::vector(detections_center_old.size()));std::cout << "distance_matrix:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){for (size_t j = 0; j < detections_center_old.size(); j++){distance_matrix[i][j] = get_distance(detections_center_new[i], detections_center_old[j]); //std::cout << distance_matrix[i][j] << " ";}std::cout << std::endl;}std::cout << "min_index:" << std::endl;std::vector min_indices(detections_center_new.size());for (size_t i = 0; i < detections_center_new.size(); i++){std::vector distance_vector = distance_matrix[i];int min_index = std::min_element(distance_vector.begin(), distance_vector.end()) - distance_vector.begin();min_indices[i] = min_index;std::cout << min_index << " ";}std::cout << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){cv::Point p1 = detections_center_new[i];cv::Point p2 = detections_center_old[min_indices[i]];std::cout << p1 << " " << p2 << std::endl;if (is_cross(p1, p2)){std::cout << "is_cross" << p1 << " " << p2 << std::endl;count++;}}detections_center_old = detections_center_new;}frame_num++;cv::putText(image, "car num: " + std::to_string(count), cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);cv::line(image, cv::Point(0, 500), cv::Point(1280, 500) , cv::Scalar(0, 0, 255));cv::imshow("output", image);cv::imwrite(std::to_string(frame_num) + ".jpg", image);}capture.release();return 0;
}

在调试中,发现v1的实现存在如下问题:出现新目标的时候,计算新旧检测框的对应关系出现匹配错误,导致计数偏多。因此在v2中设置匹配的距离阈值,并简化了判断检测框中心点连线和撞线是否相交的方法。
v2的代码实现如下:

#include 
#include #define DEBUG// 常量
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.25;
const float CONFIDENCE_THRESHOLD = 0.5;const std::vector class_name = {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light","fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow","elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard","tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple","sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch","potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone","microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear","hair drier", "toothbrush" };const int IMAGE_WIDTH = 1280;
const int IMAGE_HEIGHT = 720;
const int LINE_HEIGHT = IMAGE_HEIGHT / 2;//画出检测框和标签
void draw_label(cv::Mat& input_image, std::string label, int left, int top)
{int baseLine;cv::Size label_size = cv::getTextSize(label, 0.7, 0.7, 1, &baseLine);top = std::max(top, label_size.height);cv::Point tlc = cv::Point(left, top);cv::Point brc = cv::Point(left , top + label_size.height + baseLine);cv::putText(input_image, label, cv::Point(left, top + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 255), 1);
}//预处理
std::vector preprocess(cv::Mat& input_image, cv::dnn::Net& net)
{cv::Mat blob;cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);net.setInput(blob);std::vector preprcess_image;net.forward(preprcess_image, net.getUnconnectedOutLayersNames());return preprcess_image;
}//后处理
std::vector postprocess(std::vector& preprcess_image, cv::Mat& output_image)
{std::vector class_ids;std::vector confidences;std::vector boxes;std::vector boxes_nms;float x_factor = output_image.cols / INPUT_WIDTH;float y_factor = output_image.rows / INPUT_HEIGHT;float* data = (float*)preprcess_image[0].data;const int dimensions = 85;const int rows = 25200;for (int i = 0; i < rows; ++i){float confidence = data[4];if (confidence >= CONFIDENCE_THRESHOLD){float* classes_scores = data + 5;cv::Mat scores(1, class_name.size(), CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > SCORE_THRESHOLD){confidences.push_back(confidence);class_ids.push_back(class_id.x);float cx = data[0];float cy = data[1];float w = data[2];float h = data[3];int left = int((cx - 0.5 * w) * x_factor);int top = int((cy - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}}data += 85;}std::vector indices;cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);for (size_t i = 0; i < indices.size(); i++){int idx = indices[i];cv::Rect box = boxes[idx];boxes_nms.push_back(box);int left = box.x;int top = box.y;int width = box.width;int height = box.height;cv::rectangle(output_image, cv::Point(left, top), cv::Point(left + width, top + height), cv::Scalar(255, 0, 0), 1);std::string label = cv::format("%.2f", confidences[idx]);//label = class_name[class_ids[idx]] + ":" + label;label = "car";draw_label(output_image, label, left, top);}return boxes_nms;
}//计算检测框的中心
std::vector get_center(std::vector detections)
{std::vector detections_center(detections.size());for (size_t i = 0; i < detections.size(); i++){detections_center[i] = cv::Point(detections[i].x + detections[i].width / 2, detections[i].y + detections[i].height / 2);}return detections_center;
}//计算两点间距离
float get_distance(cv::Point p1, cv::Point p2)
{return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}//判断连接相邻两帧对应检测框中心的线段是否与红线相交
bool is_cross(cv::Point p1, cv::Point p2)
{return (p1.y <= LINE_HEIGHT && p2.y > LINE_HEIGHT) || (p1.y > LINE_HEIGHT && p2.y <= LINE_HEIGHT);
}int main(int argc, char** argv)
{cv::VideoCapture capture("test.mp4");cv::Mat frame;cv::dnn::Net net = cv::dnn::readNet("yolov5s-f32.onnx");int frame_num = 0;int count = 0;std::vector detections_center_old;std::vector detections_center_new;while(cv::waitKey(1) < 0){capture >> frame;if (frame.empty())break;std::cout << "******************************************************************* frame_num: " << frame_num << std::endl;cv::Mat image = frame.clone();std::vector preprcess_image = preprocess(image, net);std::vector detections = postprocess(preprcess_image, image);if (frame_num == 0){detections_center_old = get_center(detections);#ifdef DEBUGstd::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_old.size(); i++){std::cout << detections_center_old[i] << std::endl;}
#endif // DEBUG}else if (frame_num % 2 == 0){detections_center_new = get_center(detections);#ifdef DEBUGstd::cout << "detections_center:" << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){std::cout << detections_center_new[i] << std::endl;}
#endif // DEBUGstd::vector> distance_matrix(detections_center_new.size(), std::vector(detections_center_old.size())); //距离矩阵for (size_t i = 0; i < detections_center_new.size(); i++){for (size_t j = 0; j < detections_center_old.size(); j++){distance_matrix[i][j] = get_distance(detections_center_new[i], detections_center_old[j]); }}#ifdef DEBUGstd::cout << "min_index:" << std::endl;
#endif // DEBUGstd::vector min_indices(detections_center_new.size());for (size_t i = 0; i < detections_center_new.size(); i++){std::vector distance_vector = distance_matrix[i];float min_val = *std::min_element(distance_vector.begin(), distance_vector.end());int min_index = -1;if (min_val < LINE_HEIGHT / 5)min_index = std::min_element(distance_vector.begin(), distance_vector.end()) - distance_vector.begin();min_indices[i] = min_index;
#ifdef DEBUGstd::cout << min_index << " ";
#endif // DEBUG}std::cout << std::endl;for (size_t i = 0; i < detections_center_new.size(); i++){if (min_indices[i] < 0)continue;cv::Point p1 = detections_center_new[i];cv::Point p2 = detections_center_old[min_indices[i]];#ifdef DEBUGstd::cout << p1 << " " << p2 << std::endl;
#endif // DEBUGif (is_cross(p1, p2)){
#ifdef DEBUGstd::cout << "is_cross" << p1 << " " << p2 << std::endl;
#endif // DEBUGcount++;}}detections_center_old = detections_center_new;}cv::putText(image, "car num: " + std::to_string(count), cv::Point(20, 50), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 255), 1);cv::line(image, cv::Point(0, LINE_HEIGHT), cv::Point(IMAGE_WIDTH, LINE_HEIGHT), cv::Scalar(0, 0, 255));cv::imshow("output", image);#ifdef DEBUGif (frame_num % 2 == 0)cv::imwrite(std::to_string(frame_num) + ".jpg", image);
#endif // DEBUGframe_num++;}capture.release();return 0;
}

检测效果实现如下,效果还是可以的。完整视频中有一次计数异常,是因为检测器不准导致车辆检测框位置漂移,可以后续优化。注:由于官方提供的coco80类的开源权重文件用于车辆检测效果不是很好,LZ把检测出的类别直接固定为car,实际应自己重新训练一个车辆检测的模型。
在这里插入图片描述

代码、测试视频和转好的权重文件放在下载链接:点击跳转

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...