R语言基于协方差的结构方程拟合的卡方检验
创始人
2024-04-23 02:34:09
0

在评估结构方程模型的拟合,很常见的应用是研究χ2进行测试,因为在给定足够大的样本量的情况下,它几乎总会检测出模型与数据之间的统计上的显着差异。因为,我们的模型几乎总是数据的近似值。如果我们的模型的协方差矩阵实际上匹配抽样变异中的样本协方差矩阵,该χ2 无论样本量多大,该检验在统计学上均无统计学意义。

最近我们被客户要求撰写关于结构方程的研究报告,包括一些图形和统计输出。 

 相关视频:结构方程模型SEM分析心理学营销数据路径图可视化|数据分享

什么是结构方程建模SEM和R语言心理学和营销研究数据路径图可视化

因为到大样本量,从业人员往往依赖于其他拟合指数,如RMSEACFITLI-所有这些都是基于χ 2。在lavaan中,您会自动使用置信区间和p值对RMSEA进行紧密拟合测试。这个测试实际上使用χ2分布。

RMSEA的公式为:

其中,χ2是χ2模型的检验统计量,dF是模型自由度,N是样本量。

如果你的模型拟合数据完美,分子为零;这是标准的假设χ 2χ2-test测试。如果我们在RMSEA进行测试中,使用χ 2参数对应于RMSEA为0.05的分布。Lavaan将测试结果报告为拟合统计之一。

那么这对我们有什么帮助呢?非中心参数(λ )在lavaan的RMSEA测试实际上是χ 2 - d ˚Fχ2-dF对应于RMSEA为0.05的值。

因此,对于测试,λ 是:

对于中等拟合的测试,λ 是:

请注意,lavaan的处理方式可能有所不同。

因此,给定模型的自由度和样本量,我们可以计算出非中心性参数(λ )。给定λ中,χ2 值和模型的自由度,我们可以计算p值进行测试。

R的语法是:

示范

# 具有HolzingerSwineford1939数据集的双因子模型的模型语法
writeLines(syntax <- paste(paste("g =~", paste0("x", 1:9, collapse = " + ")),# paste("visual =~", paste0("x", 1:3, collapse = " + ")),paste("textual =~", paste0("x", 4:6, collapse = " + ")),paste("speed =~", paste0("x", 7:9, collapse = " + ")),sep = "\n"
))g =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

运行模型并报告拟合度。仅报告统计信息:

 lavaan (0.5-23.1097) converged normally after  25 iterationsNumber of observations                           301Estimator                                         MLMinimum Function Test Statistic               42.291Degrees of freedom                                21P-value (Chi-square)                           0.004Root Mean Square Error of Approximation:RMSEA                                          0.05890 Percent Confidence Interval          0.032  0.083P-value RMSEA <= 0.05                          0.276

卡方统计意义显着,该完美拟合检验表明,由于样本的变异性。

默认的卡方检验:

pchisq [1] 0.003867178

使用上面的公式计算紧密度测试的非中心参数:.0025乘以模型自由度乘以样本大小-1

 ncp.close  [1] 15.75

计算紧密拟合的卡方检验:

pchisq [1] 0.2740353

紧密契合度测试的p值为.27,接近lavaan报告的值。

如果我们降低标准以进行中等拟合的卡方检验:.0064乘以模型自由度乘以样本大小-1

 ncp.med  [1] 40.32pchisq [1] 0.9199686

我们在模型中观察模型隐含的协方差矩阵的可能性为92%。非常好。


最后,SEM从业者通常报告χ 2-test,但通常希望该测试能够检测到模型规范错误,因此在实践中经常将其忽略。


PS:潜在变量建模的另一种方法是PLS路径建模。这是一种基于OLS回归的SEM方法。


  1. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. https://doi.org/10.1037/1082-989X.1.2.130 ↩


 

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...