还在为多张Excel汇总统计发愁?Python 秒处理真香!
创始人
2024-04-24 21:25:07
0

为什么越来越多的非程序员白领都开始学习 Python ?他们可能并不是想要学习 Python 去爬取一些网站从而获得酷酷的成就感,而是工作中遇到好多数据分析处理的问题,用 Python 就可以简单高效地解决。本文就通过一个实际的例子来给大家展示一下 Python 是如何应用于实际工作中高效解决复杂问题的。

背景

小明就职于一家户外运动专营公司,他们公司旗下有好多个品牌,并且涉及到很多细分的行业。小明在这家公司任数据分析师,平时都是通过 Excel 来做数据分析的。今天老板丢给他一个任务:下班前筛选出集团公司旗下最近一年销售额前五名的品牌以及销售额。

对于 Excel 大佬来说,这不就是分分钟的事吗?小明并没有放在眼里,直到市场部的同事将原始的数据文件发给他,他才意识到事情并没有那么简单:

表格文件(数据来源于网络)

这并不是想象中的排序取前五就行了。这总共有90个文件,按常规的思路来看,他要么将所有文件的内容复制到一张表中进行分类汇总,要么将每张表格进行分类汇总,然后再最最终结果进行分类汇总。

想想这工作量,再想想截止时间,小明挠了挠头,感觉到要渐渐头秃。

思路分析

这种体力活,写程序解决是最轻松的啦。小明这时候想到了他的程序员好朋友小段,于是他把这个问题抛给了小段。

小段缕了下他那所剩无几的头发,说:so easy,只需要找潘大师即可。

小明说:你搞不定吗?还要找其他人!

小段苦笑说:不不不,潘大师是 Python 里面一个处理数据的库,叫 Pandas ,俗称 潘大师。

小明说:我不管什么大师不大师,就说需要多久搞定。

小段说:给我几分钟写程序,再跑几秒钟就好了!

小明发过去了膜拜大佬的表情。

小段略微思考了下,整理了一下程序思路:

  • 计算每张表每一行的销售额,用“访客数 * 转化率 * 客单价”就行。

  • 将每张表格根据品牌汇总销售额。

  • 将所有表格的结果汇总成一张总表

  • 在总表中根据品牌汇总销售额并排序

编码

第零步,读取 Excel :

import pandas as pddf = pd.read_excel("./tables/" + name)

第一步,计算每张表格内的销售额:

df['销售额'] = df['访客数'] * df['转化率'] * df['客单价']

第二步,将每张表格根据品牌汇总销售额:

df_sum = df.groupby('品牌')['销售额'].sum().reset_index()

第三步,将所有表格的结果汇总成一张总表:

result = pd.DataFrame()
result = pd.concat([result, df_sum])

第四步,在总表中根据品牌汇总销售额并排序:

final = result.groupby('品牌')['销售额'].sum().reset_index().sort_values('销售额', ascending=False)

最后,我们来看看完整的程序:

import pandas as pd
import osresult = pd.DataFrame()for name in os.listdir("./tables"):try:df = pd.read_excel("./tables/" + name)df['销售额'] = df['访客数'] * df['转化率'] * df['客单价']df_sum = df.groupby('品牌')['销售额'].sum().reset_index()result = pd.concat([result, df_sum])except:print(name)passfinal = result.groupby('品牌')['销售额'].sum().reset_index().sort_values('销售额', ascending=False)
pd.set_option('display.float_format', lambda x: '%.2f' % x)
print(final.head())

最后的结果是这样的:

       品牌           销售额
15   品牌-5 1078060923.62
8   品牌-17 1064495314.96
4   品牌-13 1038560274.21
3   品牌-12 1026115153.00
13   品牌-3 1006908609.07

可以看到最终的前五已经出来了,整个程序运行起来还是很快的。

几分钟之后,小段就把结果给小明发过去了,小明感动得内牛满面,直呼改天请吃饭,拜师学艺!

总结

本文主要是想通过一个实际的案例来向大家展示潘大师(Pandas)的魅力,特别是应用于这种表格处理,可以说是太方便了。写过程序的可能都有点熟悉的感觉,这种处理方式有点类似于 SQL 查询语句。潘大师不仅能使我们的程序处理起来变得更简单高效,对于需要经常处理表格的非程序员也是非常友好的,上手起来也比较简单。

 

相关内容

热门资讯

安卓更换别的手机系统,轻松切换... 你有没有想过,你的安卓手机用久了,是不是有点审美疲劳了呢?或者,你最近是不是对其他手机系统产生了浓厚...
安卓系统单机神雕侠侣,指尖重温 你有没有想过,在手机上也能体验一把江湖恩怨、侠骨柔肠?没错,就是那个让人心驰神往的《神雕侠侣》!今天...
安卓系统键盘语言切换,安卓系统... 你有没有发现,手机上的安卓系统键盘语言切换功能,简直就像是个神奇的魔法棒,轻轻一点,就能让文字飞舞在...
oppok1安卓系统,性能与体... 你有没有发现,最近手机圈里又掀起了一股热潮?没错,就是OPPO K1这款新机!这款手机不仅外观时尚,...
安卓系统环境的搭建,从零开始构... 想要在电脑上体验安卓系统的魅力,是不是已经跃跃欲试了呢?别急,今天就来手把手教你如何搭建一个属于自己...
【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...