人工智能 之 机器学习(Machine Learning)
创始人
2024-04-25 06:30:00
0

目录

一:机器学习概述

二:机器学习算法

三:机器学习模型

四:机器学习过程

五:机器学习模型验证

六:sklearn模块


一:机器学习概述

程序化处理和机器学习处理;

主观思维和客观思维;

下面举一个例子:我们现在帮小明决定明天到底要不要去看球赛

考虑因素:  天气、价格、朋友、球星

1 程序化:

if ...

else if ...

else if ...

else if ...

2 那么机器学习呢?

现在提供这样一种情境

天气:下雨

门票价格:100

同伴情况:没人一起

球星:有他喜欢的球星

那么可以做出这样一种分析:小明肯定会去,因为只要他喜欢的球星来了,无论怎么样他都会去的

由上述,机器学习示例,有了简单的概念 

经验 + 思考 = 结果

经验也称为数据(样本)分为特征和标签:

特征:指的是在某些特定的外在条件或者内在条件下的一个反应,比如上述的天气、价格、是否有喜欢的球星等 (考虑因素)

标签:指的是在特征发生后,等到的一个结果,比如去看球赛和不去看球赛

经验/数据,如下示例   特征(天气等考虑因素)   +   标签(结果)

天气价格朋友球星结果
晴天150
阴天200没有没有不去
晴天500不去
多云180没有
多云130

此时,若是再给出一组数据,来决定是否去看球赛,根据这样的经验的不断累积,就类似是机器学习的一整个过程

二:机器学习算法

线性回归

Logistic回归

决策树

朴素贝叶斯

K近邻算法

支持向量机(SVM)

... 

对于机器学习算法,举个例子

比如,一个母亲在教孩子识字的过程 (算法),那么最终会识字的孩子(模型)

三:机器学习模型

机器学习模型 = 数据 + 算法

数据的特征决定了机器学习的上限 (收集到的数据量),而算法只是无限逼近于这个上限 (不断训练模型,调优算法)

模型训练过程

机器学习算法被描述为学习一个目标函数f,该函数将输入变量X最好地映射到输出变量Y:Y=f(X)     X:模型数据      Y:结果

最常见地机器学习算法是学习映射Y=f(x)来预测新X的Y;这叫做预测建模或预测分析,我们的目标是尽可能做出最准确的预测

模型训练过程 + 模型预测过程

训练  图示如下

每一个特征x,分别有各自的w(权重) ,算法是每一个特征与其对应权重的结合,然后求和,预测结果

预测  图示 如下

输入对应特征值,模型以及存在(W权重 值已知),模型在训练成功后(预期值已知 如上图3就是该模型临界点)

四:机器学习过程

首先:问题的产生

需要准备数据集,数据集需要提纯优化,接下来训练数据,需要认识数据的分布以及观察是否有特殊点/离散点,之后进行数据预处理(数据清洗),经过这样一系列操作才比较完整,特征构造

算法的选择:首先考虑是有监督问题还是无监督问题

无监督学习(少,结果需要自己去整合分析,无监督模型会分类,把有相似特征的归为一类,准确率也不是很高),目前比如模仿人脑神经网络的,世界上做这类研究的也寥寥无几,不仅耗费大量成本时间,而且不一定能取得结果;因此,绝大多数做的都是有监督学习

有特征、有标签  --  有监督学习

有特征、无标签  --  无监督学习

分类问题 :分类统计

回归问题 :预测走向

五:机器学习模型验证

拟合(Fitting):就是说这个曲线能不能很好的描述某些样本

过拟合(Overfitting):就是太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平,不具泛化性,拿到新样本后没有办法去准确的判断

欠拟合(UnderFitting):测试样本的特性没有学到,或者是模型过于简单无法拟合或区分样本 

分类,如上图,好的拟合 如中间图所示 

欠拟合就相当于摆烂,随意分类,过拟合就相当于超级认真,精确分类

回归,如上图,好的拟合 如中间图所示 

欠拟合就相当于摆烂,随意回归曲线,过拟合就相当于超级认真,精确回归曲线

六:sklearn模块

Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习算法进行的封装和实现,它自带一些训练数据集供用户使用 

Sklearn datasets

Sklearn提供一些标准数据,我们不必再从其他网站寻找数据进行训练

鸢尾花数据集:load_iris()

手写数字数据集:load_digits()

波斯顿房价数据集:load_boson()

.... 

安装:

pip3 install sklearn -i https://pypi.mirrors.ustc.edu.cn/simple/

安装sklearn后,即可使用鸢尾花数据集,

如下博主使用鸢尾花数据集,提取特征数据、标签数据并对数据集划分

1 :sklearn - datasets -  data下包含有训练数据集供用户使用 

2 :cv2 - data 下包含有人脸识别相关训练模型 

相关内容

热门资讯

安卓系统通知管理,全面解析与优... 你有没有发现,手机里的通知就像是一群调皮的小精灵,时不时地跳出来和你互动?没错,说的就是安卓系统的通...
安卓系统手机哪买,揭秘哪里购买... 你有没有想过,拥有一部安卓系统手机是多么酷的事情呢?想象你可以自由安装各种应用,不受限制地探索各种功...
安卓系统 ipv4,基于安卓系... 你知道吗?在智能手机的世界里,有一个系统可是无人不知、无人不晓,那就是安卓系统。而在这个庞大的安卓家...
目前安卓是什么系统,探索安卓系... 亲爱的读者,你是否曾好奇过,如今安卓系统究竟是什么模样?在这个科技飞速发展的时代,操作系统如同人体的...
安卓6.0系统比5.0,从5.... 你有没有发现,自从手机更新了安卓6.0系统,感觉整个人都清爽了不少呢?没错,今天咱们就来聊聊这个话题...
安卓2.36系统升级,功能革新... 你知道吗?最近安卓系统又来了一次大变身,那就是安卓2.36系统升级!这可不是一个小打小闹的更新,而是...
安卓系统源码怎么打开,并可能需... 你有没有想过,安卓系统的源码就像是一扇神秘的门,隐藏着无数的技术秘密?想要打开这扇门,你得掌握一些小...
安卓8.0系统体验视频,智能革... 你有没有听说安卓8.0系统最近可是火得一塌糊涂啊!作为一个紧跟科技潮流的数码达人,我当然要来给你好好...
宣传系统漫画app安卓,探索安... 亲爱的读者们,你是否曾在某个午后,百无聊赖地打开手机,想要寻找一些轻松愉悦的读物?今天,我要给你介绍...
鸿蒙替换安卓系统吗,开启智能生... 你知道吗?最近科技圈里可是炸开了锅,因为华为的新操作系统鸿蒙系统,据说要大举进军手机市场,替换掉安卓...
手机安卓系统深度清理,解锁手机... 手机里的东西是不是越来越多,感觉就像一个装满了杂物的储物柜?别急,今天就来教你一招——手机安卓系统深...
安卓上的windows系统,融... 你有没有想过,在安卓手机上也能体验到Windows系统的魅力呢?没错,这就是今天我要跟你分享的神奇故...
安卓系统焦点变化事件,Andr... 你知道吗?在安卓系统的世界里,最近发生了一件超级有趣的事情——焦点变化事件。这可不是什么小打小闹,它...
一加系统安卓降级,轻松还原经典... 你有没有想过,你的手机系统升级后,突然发现某些功能变得不那么顺心了?别急,今天就来聊聊一加系统安卓降...
日本最好的安卓系统,体验非凡 亲爱的读者们,你是否曾想过,在遥远的东方,有一个国家,他们的智能手机系统独具特色,让人眼前一亮?没错...
荣耀安卓11 系统证书,保障安... 你知道吗?最近手机圈里可是炸开了锅,荣耀安卓11系统证书成了大家热议的话题。这不,我就迫不及待地来和...
安卓手机开机升级系统,体验流畅... 你有没有发现,每次你的安卓手机开机,总会有那么一刹那,屏幕上跳出一个升级系统的提示?是不是觉得这就像...
真正的安卓系统手机,安卓系统手... 你有没有想过,为什么有些人对安卓系统手机情有独钟?是不是觉得市面上的安卓手机千篇一律,缺乏个性?别急...
安卓怎么用定位系统,轻松实现精... 你有没有想过,手机里的定位系统竟然这么神奇?它不仅能帮你找到回家的路,还能在茫茫人海中找到你的好友。...
安卓的哪个系统流畅,探索新一代... 你有没有想过,为什么你的安卓手机有时候像蜗牛一样慢吞吞的,而别人的手机却像风一样快?今天,就让我带你...