学习GitHub 内容链接:
https://github.com/TommyZihao/zihao_course/tree/main/XAI
B站视频合集链接:
https://space.bilibili.com/1900783/channel/collectiondetail?sid=713364
SHAP 属于模型事后解释的方法,它的核心思想是计算特征对模型输出的边际贡献,再从全局和局部两个层面对“黑盒模型”进行解释。SHAP构建一个加性的解释模型,所有的特征都视为“贡献者”。对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。基本思想:计算一个特征加入到模型时的边际贡献,然后考虑到该特征在所有的特征序列的情况下不同的边际贡献,取均值,即某该特征的SHAPbaseline value
SHAP(SHapley Additive exPlanation)是Python开发的一个"模型解释"包,可以解释任何机器学习模型的输出。
import torch
import torchvision
from torchvision import datasets, transforms, models
from torch import nn, optim
from torch.nn import functional as F
import osimport numpy as np
import json
from PIL import Image
# 使用torch-gpu
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
shap代码实战
import shap
用Pytorch构建简单的卷积神经网络,在MNIST手写数字数据集上,使用shap的Deep Explainer进行可解释性分析,并可视化每一张图像的每一个像素,对模型预测为每一个类别的影响。
# 构建卷积神经网络
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv_layers = nn.Sequential(nn.Conv2d(1, 10, kernel_size=5),nn.MaxPool2d(2),nn.ReLU(),nn.Conv2d(10, 20, kernel_size=5),nn.Dropout(),nn.MaxPool2d(2),nn.ReLU(),)self.fc_layers = nn.Sequential(nn.Linear(320, 50),nn.ReLU(),nn.Dropout(),nn.Linear(50, 10),nn.Softmax(dim=1))def forward(self, x):x = self.conv_layers(x)x = x.view(-1, 320)x = self.fc_layers(x)return x
# 初始化模型
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 加载MNIST数据集
train_dataset = datasets.MNIST('mnist_data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor()]))test_dataset = datasets.MNIST('mnist_data', train=False, download=True,transform=transforms.Compose([transforms.ToTensor()]))
# 设置dataloader
batch_size = 256
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size, shuffle=True)test_loader = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size, shuffle=True)
def train(model, device, train_loader, optimizer, epoch):# 训练一个 epochmodel.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.nll_loss(output.log(), target).to(device)loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, device, test_loader):# 测试一个 epochmodel.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.nll_loss(output.log(), target).item() # sum up batch losspred = output.max(1, keepdim=True)[1] # get the index of the max log-probabilitycorrect += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))
num_epochs = 5for epoch in range(1, num_epochs + 1):train(model, device, train_loader, optimizer, epoch)test(model, device, test_loader)
Train Epoch: 1 [0/60000 (0%)] Loss: 2.297472
Train Epoch: 1 [25600/60000 (43%)] Loss: 2.202407
Train Epoch: 1 [51200/60000 (85%)] Loss: 1.399053Test set: Average loss: 0.0050, Accuracy: 7855/10000 (79%)Train Epoch: 2 [0/60000 (0%)] Loss: 1.234514
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.933571
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.774069Test set: Average loss: 0.0025, Accuracy: 8880/10000 (89%)Train Epoch: 3 [0/60000 (0%)] Loss: 0.748982
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.621569
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.535523Test set: Average loss: 0.0017, Accuracy: 9151/10000 (92%)Train Epoch: 4 [0/60000 (0%)] Loss: 0.569322
Train Epoch: 4 [25600/60000 (43%)] Loss: 0.596375
Train Epoch: 4 [51200/60000 (85%)] Loss: 0.552551Test set: Average loss: 0.0014, Accuracy: 9330/10000 (93%)Train Epoch: 5 [0/60000 (0%)] Loss: 0.447947
Train Epoch: 5 [25600/60000 (43%)] Loss: 0.550949
Train Epoch: 5 [51200/60000 (85%)] Loss: 0.531695Test set: Average loss: 0.0012, Accuracy: 9410/10000 (94%)
images, labels = next(iter(test_loader))
# 背景图像样本
background = images[:250]
background.shape
torch.Size([250, 1, 28, 28])
# 测试图像样本
test_images = images[250:254]
test_images.shape
torch.Size([4, 1, 28, 28])
# 初始化Deep Explainer
background = background.to(device)e = shap.DeepExplainer(model, background)
# 计算每个类别、每张测试图像、每个像素,对应的 shap 值
shap_values = e.shap_values(test_images)
Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior.
# shap 值
shap_numpy = [np.swapaxes(np.swapaxes(s, 1, -1), 1, 2) for s in shap_values]# 测试图像
test_numpy = np.swapaxes(np.swapaxes(test_images.numpy(), 1, -1), 1, 2)
shap.image_plot(shap_numpy, -test_numpy)
红色代表 shap 正值:对模型预测为该类别有正向作用
蓝色代表 shap 负值:对模型预测为该类别有负向作用
# 载入ImageNet预训练图像分类模型
model = torchvision.models.mobilenet_v2(weights=models.MobileNet_V2_Weights.DEFAULT, progress=False).eval().to(device)
with open('./data/imagenet_class_index.json') as file:class_names = [v[1] for v in json.load(file).values()]
# 测试图片
img_path = 'test_img/cat_dog.jpg'img_pil = Image.open(img_path)
X = torch.Tensor(np.array(img_pil)).unsqueeze(0)
# 预处理
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]def nhwc_to_nchw(x: torch.Tensor) -> torch.Tensor:if x.dim() == 4:x = x if x.shape[1] == 3 else x.permute(0, 3, 1, 2)elif x.dim() == 3:x = x if x.shape[0] == 3 else x.permute(2, 0, 1)return xdef nchw_to_nhwc(x: torch.Tensor) -> torch.Tensor:if x.dim() == 4:x = x if x.shape[3] == 3 else x.permute(0, 2, 3, 1)elif x.dim() == 3:x = x if x.shape[2] == 3 else x.permute(1, 2, 0)return x transform= [transforms.Lambda(nhwc_to_nchw),transforms.Resize(224),transforms.Lambda(lambda x: x*(1/255)),transforms.Normalize(mean=mean, std=std),transforms.Lambda(nchw_to_nhwc),
]inv_transform= [transforms.Lambda(nhwc_to_nchw),transforms.Normalize(mean = (-1 * np.array(mean) / np.array(std)).tolist(),std = (1 / np.array(std)).tolist()),transforms.Lambda(nchw_to_nhwc),
]transform = torchvision.transforms.Compose(transform)
inv_transform = torchvision.transforms.Compose(inv_transform)
# 构建模型预测函数
def predict(img: np.ndarray) -> torch.Tensor:img = nhwc_to_nchw(torch.Tensor(img)).to(device)output = model(img)return outputdef predict(img):img = nhwc_to_nchw(torch.Tensor(img)).to(device)output = model(img)return output
Xtr = transform(X)
out = predict(Xtr[0:1])
classes = torch.argmax(out, axis=1).detach().cpu().numpy()
print(f'Classes: {classes}: {np.array(class_names)[classes]}')
Classes: [239]: ['Bernese_mountain_dog']
# 构造输入图像
input_img = Xtr[0].unsqueeze(0)
batch_size = 50n_evals = 5000 # 迭代次数越大,显著性分析粒度越精细,计算消耗时间越长# 定义 mask,遮盖输入图像上的局部区域
masker_blur = shap.maskers.Image("blur(64, 64)", Xtr[0].shape)# 创建可解释分析算法
explainer = shap.Explainer(predict, masker_blur, output_names=class_names)
# 281:虎斑猫 tabby
shap_values = explainer(input_img, max_evals=n_evals, batch_size=batch_size, outputs=[281])
0%| | 0/4998 [00:00, ?it/s]Partition explainer: 2it [00:13, 13.87s/it]
# 整理张量维度
shap_values.data = inv_transform(shap_values.data).cpu().numpy()[0] # 原图
shap_values.values = [val for val in np.moveaxis(shap_values.values[0],-1, 0)] # shap值热力图
# 可视化
shap.image_plot(shap_values=shap_values.values,pixel_values=shap_values.data,labels=shap_values.output_names)
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
# 232 边牧犬 border collie
# 281:虎斑猫 tabby
# 852 网球 tennis ball
# 288 豹子 leopard
shap_values = explainer(input_img, max_evals=n_evals, batch_size=batch_size, outputs=[232, 281, 852, 288])# 整理张量维度
shap_values.data = inv_transform(shap_values.data).cpu().numpy()[0] # 原图
shap_values.values = [val for val in np.moveaxis(shap_values.values[0],-1, 0)] # shap值热力图# 可视化
shap.image_plot(shap_values=shap_values.values,pixel_values=shap_values.data,labels=shap_values.output_names)
0%| | 0/4998 [00:00, ?it/s]Partition explainer: 2it [00:12, 12.34s/it]
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
topk = 5shap_values = explainer(input_img, max_evals=n_evals, batch_size=batch_size, outputs=shap.Explanation.argsort.flip[:topk])# 整理张量维度
shap_values.data = inv_transform(shap_values.data).cpu().numpy()[0] # 原图
shap_values.values = [val for val in np.moveaxis(shap_values.values[0],-1, 0)] # 各个类别的shap值热力图# 可视化
shap.image_plot(shap_values=shap_values.values,pixel_values=shap_values.data,labels=shap_values.output_names)
0%| | 0/4998 [00:00, ?it/s]Partition explainer: 2it [00:12, 12.28s/it]
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
import numpy as np
import pandas as pdimport lime
from lime import lime_tabular
# 加载数据集
df = pd.read_csv('./data/wine.csv')
df.head()
fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | pH | sulphates | alcohol | quality | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7.0 | 0.27 | 0.36 | 20.7 | 0.045 | 45.0 | 170.0 | 1.0010 | 3.00 | 0.45 | 8.8 | bad |
1 | 6.3 | 0.30 | 0.34 | 1.6 | 0.049 | 14.0 | 132.0 | 0.9940 | 3.30 | 0.49 | 9.5 | bad |
2 | 8.1 | 0.28 | 0.40 | 6.9 | 0.050 | 30.0 | 97.0 | 0.9951 | 3.26 | 0.44 | 10.1 | bad |
3 | 7.2 | 0.23 | 0.32 | 8.5 | 0.058 | 47.0 | 186.0 | 0.9956 | 3.19 | 0.40 | 9.9 | bad |
4 | 7.2 | 0.23 | 0.32 | 8.5 | 0.058 | 47.0 | 186.0 | 0.9956 | 3.19 | 0.40 | 9.9 | bad |
from sklearn.model_selection import train_test_splitX = df.drop('quality', axis=1)
y = df['quality']# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
from sklearn.ensemble import RandomForestClassifier# 使用随机森林模型训练
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
RandomForestClassifier(random_state=42)
score = model.score(X_test, y_test)
score
0.8887755102040816
# 初始化LIME可解释性分析算法
explainer = lime_tabular.LimeTabularExplainer(training_data=np.array(X_train), # 训练集特征,必须是 numpy 的 Arrayfeature_names=X_train.columns, # 特征列名class_names=['bad', 'good'], # 预测类别名称mode='classification' # 分类模式
)
# 从测试集中选取一个样本,输入训练好的模型中预测,查看预测结果
idx = 3data_test = np.array(X_test.iloc[idx]).reshape(1, -1)
prediction = model.predict(data_test)[0]
y_true = np.array(y_test)[idx]
print('测试集中的 {} 号样本, 模型预测为 {}, 真实类别为 {}'.format(idx, prediction, y_true))
测试集中的 3 号样本, 模型预测为 bad, 真实类别为 bad
# 可解释性分析
exp = explainer.explain_instance(data_row=X_test.iloc[idx], predict_fn=model.predict_proba
)
exp.show_in_notebook(show_table=True)
img_path = './test_img/cat_dog.jpg'img_pil = Image.open(img_path)
img_pil
[外链图片转存中…(img-jYx6rMWl-1671980645822)]
# 加载模型
model = models.inception_v3(weights=models.Inception_V3_Weights.DEFAULT).eval().to(device)
# 载入ImageNet-1000类别
idx2label, cls2label, cls2idx = [], {}, {}
with open('./data/imagenet_class_index.json', 'r') as read_file:class_idx = json.load(read_file)idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]cls2label = {class_idx[str(k)][0]: class_idx[str(k)][1] for k in range(len(class_idx))}cls2idx = {class_idx[str(k)][0]: k for k in range(len(class_idx))}
# 预处理
trans_norm = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])trans_A = transforms.Compose([transforms.Resize((256, 256)),transforms.CenterCrop(224),transforms.ToTensor(),trans_norm])trans_B = transforms.Compose([transforms.ToTensor(),trans_norm])trans_C = transforms.Compose([transforms.Resize((256, 256)),transforms.CenterCrop(224)
])
# 进行图像分类
input_tensor = trans_A(img_pil).unsqueeze(0).to(device)
pred_logits = model(input_tensor)
pred_softmax = F.softmax(pred_logits, dim=1)
top_n = pred_softmax.topk(5)
# 定义分类预测函数
def batch_predict(images):batch = torch.stack(tuple(trans_B(i) for i in images), dim=0)batch = batch.to(device)logits = model(batch)probs = F.softmax(logits, dim=1)return probs.detach().cpu().numpy()
test_pred = batch_predict([trans_C(img_pil)])
test_pred.squeeze().argmax()
231
from lime import lime_image
explainer = lime_image.LimeImageExplainer()
explanation = explainer.explain_instance(np.array(trans_C(img_pil)), batch_predict, # 分类预测函数top_labels=5, hide_color=0, num_samples=8000) # LIME生成的邻域图像个数
0%| | 0/8000 [00:00, ?it/s]
explanation.top_labels[0]
231
from skimage.segmentation import mark_boundaries
import matplotlib.pyplot as plt
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=20, hide_rest=False)
img_boundry = mark_boundaries(temp/255.0, mask)
plt.imshow(img_boundry)
plt.show()
temp, mask = explanation.get_image_and_mask(281, positive_only=False, num_features=20, hide_rest=False)
img_boundry = mark_boundaries(temp/255.0, mask)
plt.imshow(img_boundry)
plt.show()
绿色表示该区域对当前类别影响为正,红色表示该区域对当前类别影响为负
在这次任务中,主要学习到了Shap和Lime工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。使用CAM和Captum工具包,可以减少我们很多很多的代码量,并且能快速使用,快速应用在自己的任务中、
在经过一个多星期的学习,也是需要这种代码实战告诉我们,这些应用是全面且方方面面的,这样就不会空读理论,这样可以让我们有机会将理论和实践结合起来,希望后续能够将XAI和Lime运用到我的领域中,学习到更多的知识。