原码、反码、补码:概念、计算机内部表示、实例、运算及转换规则、使用原因
创始人
2024-05-05 03:13:40
0

阅读前请看一下:我是一个热衷于记录的人,每次写博客会反复研读,尽量不断提升博客质量。文章设置为仅粉丝可见,是因为写博客确实花了不少精力。不用担心你关注我而我却不关注你,因为我是个诚信互关的人!!互相进步谢谢!!

文章目录

  • 阅读前请看一下:我是一个热衷于记录的人,每次写博客会反复研读,尽量不断提升博客质量。文章设置为仅粉丝可见,是因为写博客确实花了不少精力。不用担心你关注我而我却不关注你,因为我是个==诚信互关==的人!!互相进步谢谢!!
  • 1、机器数和真值
    • 1.1、机器数
    • 1.2、真值
  • 2、原码, 反码, 补码的基础概念和计算方法
    • 2.1、原码
    • 2.2、反码
    • 2.3、补码
    • 2.4、三者例子直观对比
    • 2.5、已知补码求原码
  • 3、为何要使用原码, 反码和补码

文中大部分内容来自于此篇博客,衷心感谢此博主的分享《https://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html》
自己又加了一些内容上去,更好去理解。

1、机器数和真值

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念。

1.1、机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

1.2、真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。

所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1


2、原码, 反码, 补码的基础概念和计算方法

在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

2.1、原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

即:

[-127 , 127]

原码是人脑最容易理解和计算的表示方式。

2.2、反码

反码的表示方法是:

正数的反码是其本身;

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。

[+1] = [00000001]原 = [00000001]反[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算。

2.3、补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的。 通常也需要转换成原码在计算其数值。

注意:在计算机系统中,数值一律用补码来表示和存储!!!原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。(摘自百度百科)

2.4、三者例子直观对比

以32位的计算为例。

正数对比:

123 的原码:00000000 00000000 00000000 01111011123 的反码:00000000 00000000 00000000 01111011123 的补码:00000000 00000000 00000000 01111011

负数对比:

-123 的原码:10000000 00000000 00000000 01111011-123 的反码:11111111 11111111 11111111 10000100-123 的补码:11111111 11111111 11111111 10000101

2.5、已知补码求原码

最高位如果是 1 的话(负数),那么除了最高位之外的取反,然后加 1 得到原码(其实与原码求补码运算规则一致)。

最高位如果是 0 的话(正数), 不变,正数的补码就是它的原码。

打个比方:2-1是怎么计算的?

计算公式:2-1=2+(-1)。计算机做减法会统一变成加法运算。2 的原码:00000010      -1 的原码:100000102 的反码:00000010      -1 的反码:111111012 的补码:00000010      -1 的补码:11111111用补码做运算:00000010+  11111111————————————————0 00000001结果 0 00000001,最高位溢出(0)丢弃, 2-1 = 1。

3、为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补 (-128没有原码和补码!!!)

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.


码字不易,谢谢点赞!诚信互关,诚信互关,诚信互关!!!
码字不易,谢谢点赞!诚信互关,诚信互关,诚信互关!!!
码字不易,谢谢点赞!诚信互关,诚信互关,诚信互关!!!

相关内容

热门资讯

微信安卓系统转苹果系统,轻松实... 你有没有想过,从微信安卓系统转到苹果系统,这中间的转换过程,就像是一场说走就走的旅行,充满了未知和惊...
如何刷安卓8.0系统,安卓8.... 你有没有想过,让你的安卓手机升级到最新的8.0系统,让它焕发出全新的活力呢?别急,今天我就来给你详细...
安卓系统里查看路由,安卓系统下... 你是不是也和我一样,对家里的无线网络充满了好奇?想知道安卓手机里怎么查看路由器信息?那就跟着我一起探...
手机出现安卓系统信号,手机信号... 你有没有发现,最近你的安卓手机信号好像变得特别不稳定呢?是不是觉得有时候信号满格,却还是接不到电话,...
创维安卓系统怎么安装,享受智能... 你家的创维电视是不是最近有点儿不给力,想要给它来个升级,让它焕发新生呢?那就得给它装个安卓系统啦!别...
中兴刷原生安卓系统,原生安卓系... 亲爱的读者们,你是否厌倦了那些千篇一律的安卓系统,想要给你的手机来点新鲜感?今天,就让我带你一起探索...
云系统与安卓系统软件,构建智能... 你有没有想过,你的手机里那些神奇的软件,其实都是靠云系统和安卓系统软件的默契配合才变得如此强大呢?想...
如何禁止安卓系统联网,全方位操... 你有没有想过,你的安卓手机其实是个小宇宙,里面藏着无数的秘密和信息?但是,你知道吗?有时候,这些信息...
a安卓系统不兼容,揭秘a设备的... 最近是不是发现你的安卓手机有些不对劲?比如,某个APP突然罢工了,再比如,你下载了一个新游戏,结果发...
安卓系统刷固件教程,解锁设备潜... 你有没有想过,你的安卓手机其实就像一个隐藏着无限可能的宝藏呢?没错,就是那个你每天不离手的宝贝。今天...
电脑系统安卓界面,功能与美学的... 你有没有发现,现在手机和电脑的界面越来越像了呢?没错,就是那个我们每天都要打交道的好伙伴——安卓界面...
吃鸡王座安卓系统,登顶吃鸡巅峰 你有没有想过,在手机游戏中,谁才是真正的“吃鸡王座”呢?今天,就让我带你一探究竟,看看安卓系统上的那...
安卓点名系统下载,安卓点名系统... 你有没有想过,在繁忙的学习生活中,有没有一种神奇的工具,能让你轻松管理课堂纪律,还能让点名变得如此有...
手机安装通用安卓系统,引领智能... 你有没有想过,为什么你的手机可以安装那么多好玩的应用?秘密就在于它搭载了通用安卓系统!想象一个系统就...
安卓系统仿真器,功能与操作指南 你有没有想过,在电脑上也能玩安卓游戏?没错,这就是安卓系统仿真器的神奇之处!想象你坐在电脑前,手握鼠...
安卓系统可以刷街机,畅享虚拟游... 你知道吗?现在用安卓系统刷街机,简直就像变魔术一样神奇!没错,就是那种让你仿佛穿越回童年,手握游戏杆...
安卓系统画画软件画笔,绘制无限... 你有没有发现,手机里的画画软件越来越丰富啦?尤其是安卓系统上的那些,简直让人眼花缭乱。今天,就让我带...
安卓系统垃圾和缓存,提升使用体... 手机里的安卓系统是不是越来越慢了?是不是觉得打开一个应用都要等半天?别急,今天就来跟你聊聊安卓系统里...
安卓系统图片转入苹果,轻松实现... 你是不是也有过这样的烦恼?手机里存了好多珍贵的照片,突然想换手机,却发现安卓系统的照片怎么也弄不到苹...
华为matebooke装安卓系... 你有没有想过,你的华为MateBook也能装上安卓系统呢?没错,就是那个我们平时手机上用的安卓系统!...