Spark RDD算子
创始人
2024-05-15 14:53:46
0

文章目录

  • Spark RDD算子
    • 一、RDD 转换算子
      • 1、Value 类型
        • (1) map
        • (2) mapPartitions
          • 1)函数说明
          • 2)小案例获取每个分区的最大值
        • (3) map 和 mapParitions 的区别
        • (4) mapParitionsWithIndex
          • 1)小案例只获取第二个分区的最大值
          • 2)小案例获取每一个数据的分区来源

Spark RDD算子

RDD 方法也叫做RDD算子,主要分为两类,第一类是用来做转换的,例如flatMap()Map()方法,第二类是行动的,例如:collenct()方法,只有触发了作业才会被执行。
在这里插入图片描述

一、RDD 转换算子

RDD 根据数据处理方式的不同将算子整体上分为Value类型,双Value类型和Key-value类型。

1、Value 类型

(1) map

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}//RDD 算子转换类型
class Spark01_RDD_Transform {}
object Spark01_RDD_Transform{def main(args: Array[String]): Unit = {//配置信息val conf = new SparkConf().setMaster("local[*]").setAppName("RDD_zhuanhuan")val context = new SparkContext(conf)//TODO 算子 => mapval rdd = context.makeRDD(List(1, 2, 3, 4)) //基于内存创建一个RDD//    def hanshu(num:Int):Int = {
//      num * 2
//    }
//
//    val value1 = rdd.map(hanshu)
//    value1.collect().foreach(println)val value = rdd.map(a => a * 2)println(value.collect().foreach(println))context.stop()}
}

map 算子的小测试:从服务器日志数据 apache.log中获取用户请求URL资源的路径
思路:文件最右边的那个是文件的路径。可以使用map方法,里面split(" ")方法用空格分隔开,然后再使用takeRight()方法,取最右边的第一个元素,那就是文件的地址了
在这里插入图片描述

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}
//map 算子的小测试:从服务器日志数据 apache.log中获取用户请求URL资源的路径
class Spark02_RDD_test {}
object Spark02_RDD_test{def main(args: Array[String]): Unit = {//配置信息val conf = new SparkConf().setMaster("local[*]").setAppName("RDD_zhuanhuan")val context = new SparkContext(conf)//TODO 算子 => mapval rdd = context.textFile("datas/apache.log")//长的字符串//短的字符串val value = rdd.map(a => a.split(" ").takeRight(1)//将文件按照空格隔开,然后拿最右边的那一个数据)value.collect().foreach(println)context.stop()}
}

map 分区数据执行顺序测试
1、rdd的计算一个分区内的那么数据是一个一个执行逻辑
只有前面一个数据全部的逻辑执行完毕后,才会执行下一个数据
一个分区内的数据的执行是有序的,
2、不同分区数据计算是无序的

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}//测试分区的执行的顺序
class Spark02_RDD_Transform_Par {}
object Spark02_RDD_Transform_Par{def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local[*]").setAppName("Spark_Par")val context = new SparkContext(conf)//1、rdd的计算一个分区内的那么数据是一个一个执行逻辑//只有前面一个数据全部的逻辑执行完毕后,才会执行下一个数据//一个分区内的数据的执行是有序的,//2、不同分区数据计算是无序的val rdd = context.makeRDD(List(1,2,3,4),2)val rddMap = rdd.map(num => {println("<<<"+num)}) //第一个map转换val rddMap1 = rddMap.map(num=>{println("###"+num)}) //第二个map转换//发现并行计算是没有顺序的rddMap.collect().foreach(println) //第一个rddMap执行rddMap1.collect().foreach(println) //第二个rddMap执行,然后查看他们输出的顺序context.stop()}
}

(2) mapPartitions

1)函数说明

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是值可以进行任意的处理,哪怕是数据过滤。例如这里过滤掉等于2的数据。
val dataRDD1 = dataRDD.mapPartitions(
datas => {
datas.filter(_ == 2)
}
)
说明
map 是一个一个执行的,类似于之前的字节流,所以效率肯定不高,所以需要一个像之前优化字节流的缓冲区那样的方法,所以有了mapParitions 方法,mapParitions 方法是将一个分区内的数据全部拿到之后,然后再进行map操作,那效率肯定就高得多。
注意
mapPartitions:可以以分区为单位进行数据转换操作,但是会将整个分区的数据加载到内存中进行引用,如果处理完的数据是不会被释放掉,存在对象的引用,所以在内存比较小的情况下,数据量较大的情况下,容易出现内存溢出。
总结:两个方法的应用场景不同,如果内存足够那么mapPartitions方法肯定是效率更高的,但是mapPartitions方法存在对象引用,操作完之后内存不会被释放。要是内存小,数据量大的情况下那么最好使用map方法,因为是一条一条操作的,执行完之后内存就会被释放,没有对象引用,虽然效率会低一点,但是不会出错。

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}//map 是一个一个执行的,类似于之前的字节流,所以效率肯定不高
//所以需要一个像之前优化字节流的缓冲区那样的方法
//所以有了mapParitions 方法
class Spark02_RDD_Transform {}
object Spark02_RDD_Transform{def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local[*]").setAppName("Spark_Par")val context = new SparkContext(conf)val rdd = context.makeRDD(List(1, 2, 3, 4), 2) //创建一个RDD//TODO 算子 - mapPartitions//mapPartitions:可以以分区为单位进行数据转换操作//但是会将整个分区的数据加载到内存中进行引用//如果处理完的数据是不会被释放掉,存在对象的引用//所以在内存比较小的情况下,数据量较大的情况下,容易出现内存溢出。//这个方法之所以高效,他是把一个分区内的数据全部拿到之后才开始做操作//而不是一个一个的做操作val mpRDD = rdd.mapPartitions(a => { //这这个方法执行底层是迭代器println(">>>>>>>>>>")a.map(_ * 2) //相当于先把一个分区内的数据聚合了,然后再进行map操作,这个效率就要高得多了})mpRDD.collect()foreach(println)context.stop()}
}
2)小案例获取每个分区的最大值

首先创建RDD的时候,就设置好分区数。
思路:因为mapPartitions方法是将待处理的数据以分区为单位发送到计算节点进行处理,所以我们可以直接用它直接按照每一个分区进行操作,然后直接max方法获取最大值。但是这里的难点在于,mapPartitions方法返回的是一个迭代器,而max方法返回的是一个Int类型的值,所以我们需要用List或者其他类型的集合都可以,给它包裹起来,然后用toIterator方法进行转换,例如List(a.max).toIterator。最后就可以得到每一个分区的最大值了,第一个分区1,2 第二个分区的数据3,4 所以最后输出的是2,4。
在这里插入图片描述

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}
//案例:获取每个分区的最大值
class Spark02_RDD_Transform_Par2 {}
object Spark02_RDD_Transform_Par2{def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local[*]").setAppName("Spark_Par")val context = new SparkContext(conf)val rdd = context.makeRDD(List(1, 2, 3, 4), 2) //创建一个RDD//TODO 算子 - mapPartitionsval mpRDD = rdd.mapPartitions(a => { //这这个方法执行底层是迭代器println(">>>>>>>>>>")List(a.max).toIterator //因为mapPartitions方法返回的是一个迭代器,a.max得到的是一个Int的数值})                  //所以我们的用列表,或者其他的集合都可以把他包起来,然后toIterator将它转换为迭代器就可以了mpRDD.collect().foreach(println) //得到的结果应该是2和4,第一个分区1,2 第二个分区2,4context.stop()}
}

(3) map 和 mapParitions 的区别

数据处理角度
Map 算子是分区内一个数据一个数的执行,类似于串行操作。而mapParitions算子是已分区为单位进行批处理操作。
功能的角度
Map 算子主要目的是将数据源中的数据进行转换和改变。但是不会减少或增多数据。mapParitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,所以可以增加或减少数据。
性能的角度
Map 算子因为类似于串行操作,所以性能比较低,mapParitions 算子类似于批处理,所以性能较高。但是mapParitions 算子会长时间占用内容,那么这样会导致内存可能不够用,出现内存溢出的错误,所以在内存有限的情况下,不推荐使用,推荐使用map操作。

(4) mapParitionsWithIndex

函数说明
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

1)小案例只获取第二个分区的最大值

就是跟mapParitions方法一样的,只是多了一个分区编号,可以指定操作哪一个分区。在某些时候非常有用,比如有两个分区,我只要第二个分区的最大值,第一个分区的数据不要。
思路
里面第一个参数是分区的索引,第二个参数是迭代器也就是分区的所有数据。我们可以对分区进行判断,如果等于1说明就是第二个分区,我们直接返回那个迭代器,然后求的是第二个分区的最大值,我们再像刚刚一样用集合包起来,然后使用toIterator方法进行转换。然后如果不为1的话那么返回一个空的迭代器,Nil.iterator Nil 方法是空集合,空集合.迭代器,就是空迭代器。

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}//mapParitionsWithIndex 方法 比mapParitions多了一个分区编号
class Spark03_RDD_mapParitionsWithIndex {}
object Spark03_RDD_mapParitionsWithIndex{def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local[*]").setAppName("Spark_Par")val context = new SparkContext(conf)val rdd = context.makeRDD(List(1, 2, 3, 4), 2) //创建一个RDD//TODO 算子 - mapPartitionsWithIndex//[1,2][3,4]val mpRDD = rdd.mapPartitionsWithIndex((index,iter) => { //第一个参数是索引的编号,第二个参数是全部的数据,就是迭代器if (index == 1){List(iter.max).toIterator //因为我们只要第二个分区,第一个分区索引为0,第二个分区索引为1,如果1就直接返回迭代器}else{Nil.iterator //如果不是1,那么我们返回一个空的迭代器,Nil 空集合}})mpRDD.collect().foreach(println)context.stop()}
}
2)小案例获取每一个数据的分区来源

分为了4个分区
思路
使用mapPartitionsWithIndex方法,第一个是索引第二个是迭代器,分区中的每一个数据,然后对迭代器进行map操作,映射,第一个参数是分区的索引,第二个参数是分区中的每个数据。就取出来了。
在这里插入图片描述

package com.atguigu.bigdata.spark.core.wc.operatorimport org.apache.spark.{SparkConf, SparkContext}获取每一个数据来自于哪一个分区
class Spark03_RDD_mapParitionsWithIndex2 {}
object Spark03_RDD_mapParitionsWithIndex2{def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local[*]").setAppName("Spark_Par")val context = new SparkContext(conf)val rdd = context.makeRDD(List(1, 2, 3, 4), 4) //创建一个RDD//TODO 算子 - mapPartitionsWithIndex//[1,2][3,4]val mpRDD = rdd.mapPartitionsWithIndex((index,iter) => {iter.map(a => {(index,a) //第一个是分区索引,第二个是每一个数据})})mpRDD.collect().foreach(println)context.stop()}
}

相关内容

热门资讯

安卓系统不推送更新,揭秘背后的... 最近是不是发现你的安卓手机有点儿“懒”啊?更新推送总是慢吞吞的,让人等得花儿都谢了。别急,今天就来给...
ape格式转换安卓系统,享受音... 你有没有想过,你的安卓手机里的ape格式音乐文件,竟然可以通过一个小小的转换,焕发出全新的生命力?没...
获取安卓系统加载器,核心功能与... 你有没有想过,你的安卓手机里那些神奇的软件和游戏是怎么被安装到你的设备上的呢?没错,就是通过一个叫做...
安卓系统文件夹在哪,安卓系统文... 你有没有遇到过这样的情况:手机里乱糟糟的,想找个文件却找不到?别急,今天就来给你揭秘安卓系统文件夹的...
安卓手感最好的裸机系统,安卓手... 安卓手感最好的裸机系统:探索极致体验的秘密武器在数字世界中,我们常常被各种功能和复杂操作所包围,尤其...
nas如何刷回安卓系统,轻松刷... 你有没有想过,你的NAS(网络附加存储)突然间变成了一个安卓的小天地?别急,这可不是什么天方夜谭,而...
荣耀沿用的安卓系统吗,打造个性... 你有没有注意到,最近荣耀的新机发布,大家都在热议一个问题:荣耀沿用的安卓系统吗?这可是个让人好奇不已...
快麦erp系统安卓下载,一键下... 你有没有听说最近一款叫做快麦ERP系统的软件在安卓平台上大受欢迎呢?没错,就是那个能让你企业管理如虎...
华为安卓系统下载app,一步到... 你有没有发现,最近华为手机的用户们都在忙活一件大事儿?没错,那就是下载安卓系统上的各种app啦!这可...
原生安卓系统游戏模式,畅享沉浸... 亲爱的手机游戏爱好者们,你是否曾为手机游戏运行不畅而烦恼?又或者,你是否渴望在游戏中获得更极致的体验...
安卓9改系统语言设置,轻松切换... 你有没有发现,手机里的语言设置有时候真的让人头疼?比如说,你突然想用一下安卓9的系统语言设置,结果发...
怎么升级安卓最新系统,畅享安卓... 亲爱的手机控们,你是不是也和我一样,对安卓系统的更新充满了期待?每次系统升级,都仿佛给我们的手机带来...
安卓系统电视跳舞毯,家庭娱乐新... 你有没有想过,家里的电视除了用来追剧、看电影,还能变成一个充满活力的娱乐中心?没错,我要给你介绍的就...
安卓系统维护周期,全方位守护您... 亲爱的手机控们,你是不是也和我一样,对安卓系统的维护周期充满了好奇呢?毕竟,我们的手机可是我们日常生...
安卓系统电脑怎么往下滑,一扫即... 你有没有发现,用安卓系统电脑的时候,有时候屏幕上会出现一些小图标或者应用,你想要快速浏览或者切换,却...
手机中判断安卓系统苹果系统js... 你有没有想过,你的手机里到底装的是安卓系统还是苹果系统呢?这可不是一个小问题哦,因为不同的系统,就像...
window系统和安卓系统还原... 你有没有遇到过手机或电脑突然卡顿,或者不小心删掉了重要的文件?别急,今天就来给你详细说说如何让win...
安卓系统打电话变声器,轻松实现... 安卓系统打电话变声器:探索数字时代的通信革新在数字化浪潮中,智能手机已经成为我们生活中不可或缺的一部...
android系统和安卓哪个好... 说到手机操作系统,你是不是也和我一样,对Android系统和安卓系统傻傻分不清楚呢?别急,今天就来给...
米柚系统是不是安卓,基于安卓的... 亲爱的读者,你是否曾在手机的选择上犹豫不决,尤其是当面对那些自称是安卓系统但又有自己特色的操作系统时...