Knowledge-based-BERT(三)
创始人
2024-05-19 19:16:48
0

多种预训练任务解决NLP处理SMILES的多种弊端,代码:Knowledge-based-BERT,原文:Knowledge-based BERT: a method to extract molecular features like computational chemists,代码解析继续downstream_task。模型框架如下:
在这里插入图片描述

文章目录

  • 1.load_data_for_random_splited
  • 2.model
    • 2.1.pos_weight
    • 1.2.load_pretrained_model
  • 3.run
    • 3.1.run_an_eval_global_epoch
    • 3.2.step

for task in args['task_name_list']:args['task_name'] = taskargs['data_path'] = '../data/task_data/' + args['task_name'] + '.npy'all_times_train_result = []all_times_val_result = []all_times_test_result = []result_pd = pd.DataFrame()result_pd['index'] = ['roc_auc', 'accuracy', 'sensitivity', 'specificity', 'f1-score', 'precision', 'recall','error rate', 'mcc']for time_id in range(args['times']):set_random_seed(2020+time_id)train_set, val_set, test_set, task_number = build_data.load_data_for_random_splited(data_path=args['data_path'], shuffle=True)print("Molecule graph is loaded!")

1.load_data_for_random_splited

def load_data_for_random_splited(data_path='example.npy', shuffle=True):data = np.load(data_path, allow_pickle=True)smiles_list = data[0]tokens_idx_list = data[1]labels_list = data[2]mask_list = data[3]group_list = data[4]if shuffle:random.shuffle(group_list)print(group_list)train_set = []val_set = []test_set = []task_number = len(labels_list[1])for i, group in enumerate(group_list):molecule = [smiles_list[i], tokens_idx_list[i], labels_list[i], mask_list[i]]if group == 'training':train_set.append(molecule)elif group == 'val':val_set.append(molecule)else:test_set.append(molecule)print('Training set: {}, Validation set: {}, Test set: {}, task number: {}'.format(len(train_set), len(val_set), len(test_set), task_number))return train_set, val_set, test_set, task_number

2.model

train_loader = DataLoader(dataset=train_set,batch_size=args['batch_size'],shuffle=True,collate_fn=collate_data)val_loader = DataLoader(dataset=val_set,batch_size=args['batch_size'],collate_fn=collate_data)test_loader = DataLoader(dataset=test_set,batch_size=args['batch_size'],collate_fn=collate_data)pos_weight_task = pos_weight(train_set)one_time_train_result = []one_time_val_result = []one_time_test_result = []print('***************************************************************************************************')print('{}, {}/{} time'.format(args['task_name'], time_id+1, args['times']))print('***************************************************************************************************')loss_criterion = torch.nn.BCEWithLogitsLoss(reduction='none', pos_weight=pos_weight_task.to(args['device']))model = K_BERT_WCL(d_model=args['d_model'], n_layers=args['n_layers'], vocab_size=args['vocab_size'],maxlen=args['maxlen'], d_k=args['d_k'], d_v=args['d_v'], n_heads=args['n_heads'], d_ff=args['d_ff'],global_label_dim=args['global_labels_dim'], atom_label_dim=args['atom_labels_dim'])stopper = EarlyStopping(patience=args['patience'], pretrained_model=args['pretrain_model'],pretrain_layer=args['pretrain_layer'],task_name=args['task_name']+'_downstream_k_bert_wcl', mode=args['mode'])model.to(args['device'])stopper.load_pretrained_model(model)optimizer = Adam(model.parameters(), lr=args['lr'])

2.1.pos_weight

def pos_weight(train_set):smiles, tokens_idx, labels, mask = map(list, zip(*train_set))task_pos_weight_list = []for j in range(len(labels[1])):num_pos = 0num_impos = 0for i in labels:if i[j] == 1:num_pos = num_pos + 1if i[j] == 0:num_impos = num_impos + 1task_pos_weight = num_impos / (num_pos+0.00000001)task_pos_weight_list.append(task_pos_weight)return torch.tensor(task_pos_weight_list)
  • 这里不理解为什么这么设置 task_pos_weight_list

1.2.load_pretrained_model

    def load_pretrained_model(self, model):if self.pretrain_layer == 1:pretrained_parameters = ['embedding.tok_embed.weight', 'embedding.pos_embed.weight', 'embedding.norm.weight', 'embedding.norm.bias', 'layers.0.enc_self_attn.linear.weight', 'layers.0.enc_self_attn.linear.bias', 'layers.0.enc_self_attn.layernorm.weight', 'layers.0.enc_self_attn.layernorm.bias', 'layers.0.enc_self_attn.W_Q.weight', 'layers.0.enc_self_attn.W_Q.bias', 'layers.0.enc_self_attn.W_K.weight', 'layers.0.enc_self_attn.W_K.bias', 'layers.0.enc_self_attn.W_V.weight', 'layers.0.enc_self_attn.W_V.bias', 'layers.0.pos_ffn.fc.0.weight', 'layers.0.pos_ffn.fc.2.weight', 'layers.0.pos_ffn.layernorm.weight', 'layers.0.pos_ffn.layernorm.bias']elif self.pretrain_layer == 2:pretrained_parameters = ['embedding.tok_embed.weight', 'embedding.pos_embed.weight', 'embedding.norm.weight', 'embedding.norm.bias', 'layers.0.enc_self_attn.linear.weight', 'layers.0.enc_self_attn.linear.bias', 'layers.0.enc_self_attn.layernorm.weight', 'layers.0.enc_self_attn.layernorm.bias', 'layers.0.enc_self_attn.W_Q.weight', 'layers.0.enc_self_attn.W_Q.bias', 'layers.0.enc_self_attn.W_K.weight', 'layers.0.enc_self_attn.W_K.bias', 'layers.0.enc_self_attn.W_V.weight', 'layers.0.enc_self_attn.W_V.bias', 'layers.0.pos_ffn.fc.0.weight', 'layers.0.pos_ffn.fc.2.weight', 'layers.0.pos_ffn.layernorm.weight', 'layers.0.pos_ffn.layernorm.bias', 'layers.1.enc_self_attn.linear.weight', 'layers.1.enc_self_attn.linear.bias', 'layers.1.enc_self_attn.layernorm.weight', 'layers.1.enc_self_attn.layernorm.bias', 'layers.1.enc_self_attn.W_Q.weight', 'layers.1.enc_self_attn.W_Q.bias', 'layers.1.enc_self_attn.W_K.weight', 'layers.1.enc_self_attn.W_K.bias', 'layers.1.enc_self_attn.W_V.weight', 'layers.1.enc_self_attn.W_V.bias', 'layers.1.pos_ffn.fc.0.weight', 'layers.1.pos_ffn.fc.2.weight', 'layers.1.pos_ffn.layernorm.weight', 'layers.1.pos_ffn.layernorm.bias']elif self.pretrain_layer == 3:...elif self.pretrain_layer == 'all_12layer':pretrained_parameters = ['embedding.tok_embed.weight', 'embedding.pos_embed.weight','embedding.norm.weight', 'embedding.norm.bias','layers.0.enc_self_attn.linear.weight', 'layers.0.enc_self_attn.linear.bias','layers.0.enc_self_attn.layernorm.weight', 'layers.0.enc_self_attn.layernorm.bias','layers.0.enc_self_attn.W_Q.weight', 'layers.0.enc_self_attn.W_Q.bias','layers.0.enc_self_attn.W_K.weight', 'layers.0.enc_self_attn.W_K.bias','layers.0.enc_self_attn.W_V.weight', 'layers.0.enc_self_attn.W_V.bias','layers.0.pos_ffn.fc.0.weight', 'layers.0.pos_ffn.fc.2.weight','layers.0.pos_ffn.layernorm.weight', 'layers.0.pos_ffn.layernorm.bias','layers.1.enc_self_attn.linear.weight', 'layers.1.enc_self_attn.linear.bias','layers.1.enc_self_attn.layernorm.weight', 'layers.1.enc_self_attn.layernorm.bias','layers.1.enc_self_attn.W_Q.weight', 'layers.1.enc_self_attn.W_Q.bias','layers.1.enc_self_attn.W_K.weight', 'layers.1.enc_self_attn.W_K.bias','layers.1.enc_self_attn.W_V.weight', 'layers.1.enc_self_attn.W_V.bias','layers.1.pos_ffn.fc.0.weight', 'layers.1.pos_ffn.fc.2.weight','layers.1.pos_ffn.layernorm.weight', 'layers.1.pos_ffn.layernorm.bias','layers.2.enc_self_attn.linear.weight', 'layers.2.enc_self_attn.linear.bias','layers.2.enc_self_attn.layernorm.weight', 'layers.2.enc_self_attn.layernorm.bias','layers.2.enc_self_attn.W_Q.weight', 'layers.2.enc_self_attn.W_Q.bias','layers.2.enc_self_attn.W_K.weight', 'layers.2.enc_self_attn.W_K.bias','layers.2.enc_self_attn.W_V.weight', 'layers.2.enc_self_attn.W_V.bias','layers.2.pos_ffn.fc.0.weight', 'layers.2.pos_ffn.fc.2.weight','layers.2.pos_ffn.layernorm.weight', 'layers.2.pos_ffn.layernorm.bias','layers.3.enc_self_attn.linear.weight', 'layers.3.enc_self_attn.linear.bias','layers.3.enc_self_attn.layernorm.weight', 'layers.3.enc_self_attn.layernorm.bias','layers.3.enc_self_attn.W_Q.weight', 'layers.3.enc_self_attn.W_Q.bias','layers.3.enc_self_attn.W_K.weight', 'layers.3.enc_self_attn.W_K.bias','layers.3.enc_self_attn.W_V.weight', 'layers.3.enc_self_attn.W_V.bias','layers.3.pos_ffn.fc.0.weight', 'layers.3.pos_ffn.fc.2.weight','layers.3.pos_ffn.layernorm.weight', 'layers.3.pos_ffn.layernorm.bias','layers.4.enc_self_attn.linear.weight', 'layers.4.enc_self_attn.linear.bias','layers.4.enc_self_attn.layernorm.weight', 'layers.4.enc_self_attn.layernorm.bias','layers.4.enc_self_attn.W_Q.weight', 'layers.4.enc_self_attn.W_Q.bias','layers.4.enc_self_attn.W_K.weight', 'layers.4.enc_self_attn.W_K.bias','layers.4.enc_self_attn.W_V.weight', 'layers.4.enc_self_attn.W_V.bias','layers.4.pos_ffn.fc.0.weight', 'layers.4.pos_ffn.fc.2.weight','layers.4.pos_ffn.layernorm.weight', 'layers.4.pos_ffn.layernorm.bias','layers.5.enc_self_attn.linear.weight', 'layers.5.enc_self_attn.linear.bias','layers.5.enc_self_attn.layernorm.weight', 'layers.5.enc_self_attn.layernorm.bias','layers.5.enc_self_attn.W_Q.weight', 'layers.5.enc_self_attn.W_Q.bias','layers.5.enc_self_attn.W_K.weight', 'layers.5.enc_self_attn.W_K.bias','layers.5.enc_self_attn.W_V.weight', 'layers.5.enc_self_attn.W_V.bias','layers.5.pos_ffn.fc.0.weight', 'layers.5.pos_ffn.fc.2.weight','layers.5.pos_ffn.layernorm.weight', 'layers.5.pos_ffn.layernorm.bias','layers.6.enc_self_attn.linear.weight', 'layers.6.enc_self_attn.linear.bias','layers.6.enc_self_attn.layernorm.weight', 'layers.6.enc_self_attn.layernorm.bias','layers.6.enc_self_attn.W_Q.weight', 'layers.6.enc_self_attn.W_Q.bias','layers.6.enc_self_attn.W_K.weight', 'layers.6.enc_self_attn.W_K.bias','layers.6.enc_self_attn.W_V.weight', 'layers.6.enc_self_attn.W_V.bias','layers.6.pos_ffn.fc.0.weight', 'layers.6.pos_ffn.fc.2.weight','layers.6.pos_ffn.layernorm.weight', 'layers.6.pos_ffn.layernorm.bias','layers.7.enc_self_attn.linear.weight', 'layers.7.enc_self_attn.linear.bias','layers.7.enc_self_attn.layernorm.weight', 'layers.7.enc_self_attn.layernorm.bias','layers.7.enc_self_attn.W_Q.weight', 'layers.7.enc_self_attn.W_Q.bias','layers.7.enc_self_attn.W_K.weight', 'layers.7.enc_self_attn.W_K.bias','layers.7.enc_self_attn.W_V.weight', 'layers.7.enc_self_attn.W_V.bias','layers.7.pos_ffn.fc.0.weight', 'layers.7.pos_ffn.fc.2.weight','layers.7.pos_ffn.layernorm.weight', 'layers.7.pos_ffn.layernorm.bias','layers.8.enc_self_attn.linear.weight', 'layers.8.enc_self_attn.linear.bias','layers.8.enc_self_attn.layernorm.weight', 'layers.8.enc_self_attn.layernorm.bias','layers.8.enc_self_attn.W_Q.weight', 'layers.8.enc_self_attn.W_Q.bias','layers.8.enc_self_attn.W_K.weight', 'layers.8.enc_self_attn.W_K.bias','layers.8.enc_self_attn.W_V.weight', 'layers.8.enc_self_attn.W_V.bias','layers.8.pos_ffn.fc.0.weight', 'layers.8.pos_ffn.fc.2.weight','layers.8.pos_ffn.layernorm.weight', 'layers.8.pos_ffn.layernorm.bias','layers.9.enc_self_attn.linear.weight', 'layers.9.enc_self_attn.linear.bias','layers.9.enc_self_attn.layernorm.weight', 'layers.9.enc_self_attn.layernorm.bias','layers.9.enc_self_attn.W_Q.weight', 'layers.9.enc_self_attn.W_Q.bias','layers.9.enc_self_attn.W_K.weight', 'layers.9.enc_self_attn.W_K.bias','layers.9.enc_self_attn.W_V.weight', 'layers.9.enc_self_attn.W_V.bias','layers.9.pos_ffn.fc.0.weight', 'layers.9.pos_ffn.fc.2.weight','layers.9.pos_ffn.layernorm.weight', 'layers.9.pos_ffn.layernorm.bias','layers.10.enc_self_attn.linear.weight', 'layers.10.enc_self_attn.linear.bias','layers.10.enc_self_attn.layernorm.weight','layers.10.enc_self_attn.layernorm.bias', 'layers.10.enc_self_attn.W_Q.weight','layers.10.enc_self_attn.W_Q.bias', 'layers.10.enc_self_attn.W_K.weight','layers.10.enc_self_attn.W_K.bias', 'layers.10.enc_self_attn.W_V.weight','layers.10.enc_self_attn.W_V.bias', 'layers.10.pos_ffn.fc.0.weight','layers.10.pos_ffn.fc.2.weight', 'layers.10.pos_ffn.layernorm.weight','layers.10.pos_ffn.layernorm.bias''fc.1.weight', 'fc.1.bias', 'fc.3.weight', 'fc.3.bias', 'classifier_global.weight','classifier_global.bias', 'classifier_atom.weight', 'classifier_atom.bias']pretrained_model = torch.load(self.pretrained_model, map_location=torch.device('cpu'))# pretrained_model = torch.load(self.pretrained_model)model_dict = model.state_dict()pretrained_dict = {k: v for k, v in pretrained_model['model_state_dict'].items() if k in pretrained_parameters}model_dict.update(pretrained_dict)model.load_state_dict(pretrained_dict, strict=False)

3.run

for epoch in range(args['num_epochs']):train_score = run_a_train_global_epoch(args, epoch, model, train_loader, loss_criterion, optimizer)# Validation and early stop_ = run_an_eval_global_epoch(args, model, train_loader)[0]val_score = run_an_eval_global_epoch(args, model, val_loader)[0]test_score = run_an_eval_global_epoch(args, model, test_loader)[0]if epoch < 5:early_stop = stopper.step(0, model)else:early_stop = stopper.step(val_score, model)print('epoch {:d}/{:d}, {}, lr: {:.6f},  train: {:.4f}, valid: {:.4f}, best valid {:.4f}, ''test: {:.4f}'.format(epoch + 1, args['num_epochs'], args['metric_name'], optimizer.param_groups[0]['lr'], train_score, val_score,stopper.best_score, test_score))if early_stop:break
stopper.load_checkpoint(model)

3.1.run_an_eval_global_epoch

def run_an_eval_global_epoch(args, model, data_loader):model.eval()eval_meter = Meter()with torch.no_grad():for batch_id, batch_data in enumerate(data_loader):smiles, token_idx, global_labels, mask = batch_datatoken_idx = token_idx.long().to(args['device'])mask = mask.float().to(args['device'])global_labels = global_labels.float().to(args['device'])logits_global = model(token_idx)eval_meter.update(logits_global, global_labels, mask=mask)del token_idx, global_labelstorch.cuda.empty_cache()y_pred, y_true = eval_meter.compute_metric('return_pred_true')y_true_list = y_true.squeeze(dim=1).tolist()y_pred_list = torch.sigmoid(y_pred).squeeze(dim=1).tolist()# save predictiony_pred_label = [1 if x >= 0.5 else 0 for x in y_pred_list]auc = metrics.roc_auc_score(y_true_list, y_pred_list)accuracy = metrics.accuracy_score(y_true_list, y_pred_label)se, sp = sesp_score(y_true_list, y_pred_label)pre, rec, f1, sup = metrics.precision_recall_fscore_support(y_true_list, y_pred_label)mcc = metrics.matthews_corrcoef(y_true_list, y_pred_label)f1 = f1[1]rec = rec[1]pre = pre[1]err = 1 - accuracyresult = [auc, accuracy, se, sp, f1, pre, rec, err, mcc]return result

3.2.step

def step(self, score, model):if self.best_score is None:self.best_score = scoreself.save_checkpoint(model)elif self._check(score, self.best_score):self.best_score = scoreself.save_checkpoint(model)self.counter = 0else:self.counter += 1print('EarlyStopping counter: {} out of {}'.format(self.counter, self.patience))if self.counter >= self.patience:self.early_stop = Truereturn self.early_stop

相关内容

热门资讯

安卓系统苹果手机识别,跨界融合... 你知道吗?在科技飞速发展的今天,手机已经成为了我们生活中不可或缺的一部分。而说到手机,安卓系统和苹果...
harmonyos系统是不是安... 亲爱的读者,你是否曾好奇过HarmonyOS系统与安卓系统之间的关系?是不是安卓的“亲戚”?今天,就...
手机怎么装系统安卓,安卓系统安... 手机卡顿了?想给安卓系统来个大变身?别急,跟着我一步步来,保证让你的手机焕然一新!一、准备工作在开始...
安卓Linux系统内网穿透,A... 你有没有想过,你的安卓手机里那些看似普通的APP,其实可能正在悄悄地帮你打通网络世界的任督二脉呢?没...
win怎么安装安卓系统,Win... 亲爱的读者,你是不是对Win系统上的安卓应用垂涎已久,但又苦于不知道如何安装安卓系统呢?别急,今天我...
升级小米平板安卓系统,畅享全新... 你有没有发现,你的小米平板用久了,是不是感觉有点卡呢?别急,今天就来教你怎么给它来个系统升级,让它焕...
捷豹安卓系统车载,捷豹安卓系统... 哇,你有没有想过,当你的手机和汽车融为一体,会是怎样的体验呢?想象你正驾驶着你的捷豹,车窗外的风景如...
安卓1到10系统,安卓1.0至... 你有没有想过,手机里的安卓系统就像是我们生活中的好朋友,从青涩的少年成长为稳重的青年呢?从安卓1.0...
安卓8.0停用系统应用,提升使... 你知道吗?最近安卓系统又来了一次大动作,那就是安卓8.0系统开始停用一些系统应用了。这可真是让人有点...
安卓系统修改mtu值,轻松提升... 你有没有想过,你的安卓手机其实是个小小的电脑呢?它里面藏着许多可以自定义的秘密功能,就像修改MTU值...
安卓平板改window系统,探... 你有没有想过,你的安卓平板其实可以摇身一变,变成一个Windows系统的电脑呢?没错,就是那种可以运...
时空猎人安卓苹果系统,探索无尽... 你知道吗?最近在手机游戏圈里,有一款叫做《时空猎人》的游戏可是火得一塌糊涂呢!不管是安卓用户还是苹果...
安卓9.0系统的电视,新一代电... 亲爱的读者们,你是否也像我一样,对科技新玩意儿充满好奇?今天,我要和你聊聊一个让人眼前一亮的话题——...
小pc安装安卓系统,轻松安装安... 你有没有想过,你的小PC也能变身成为安卓系统的超级玩家呢?没错,就是那个平时默默无闻的小家伙,现在也...
高通备份安卓系统,全方位数据安... 你知道吗?在这个科技飞速发展的时代,手机备份可是个不得不提的话题。尤其是对于安卓用户来说,选择一个靠...
谷歌安卓系统有多少,从诞生到全... 你有没有想过,那个无处不在的谷歌安卓系统,究竟在全球有多少用户呢?它就像一个神秘的数字,每天都在悄悄...
fc黄金传说安卓系统,畅享复古... 你有没有听说最近安卓系统上的一款超酷的游戏——《FC黄金传说》?这款游戏可是让不少玩家都沉迷其中,今...
变小的我安卓系统,安卓系统演变... 你有没有发现,最近你的手机好像变轻了?没错,说的就是你,那个陪伴你多年的安卓系统。它悄无声息地进行了...
vivo安卓系统小彩蛋,体验科... 你知道吗?在vivo的安卓系统中,竟然隐藏着一些超有趣的小彩蛋!这些小彩蛋就像是在手机里埋下的宝藏,...
安卓系统如何强制重启,安卓系统... 手机突然卡壳了,是不是又该给它来个“大保健”了?没错,今天就来聊聊安卓系统如何强制重启。别小看这个看...