快速傅里叶算法(FFT)快在哪里?
创始人
2024-05-26 12:26:15
0

目录

前言

1、DFT算法 

2、FFT算法

2.1 分类

 2.2 以基2 DIT(时间抽取) FFT 算法为例

2.2.1 一次分解 

2.2.2 多次分解

 参考


前言

  对信号分析的过程中,为了能换一个角度观察问题,很多时候需要把时域信号波形变换到频域进行分析,这涉及到对信号求傅里叶变换,在计算机中便于处理的是离散信号,因此需要求信号的离散傅里叶变换,但是离散傅里叶变换(DFT--Discrete Fourier transform)的算法时间复杂度O(n2),为了能提高计算的速度,很多时候我们进行的变换为快速傅里叶变换(FFT--Fast Fourier Transform),其算法时间复杂度O(nlogn),大大提高了计算的速度,那么该快速傅里叶变换算法的快在哪里?中间进行了什么操作,我们下面具体分析。

在之前的一篇文章中我们提到了DFT和FFT的关系

频谱、功率谱、倒频谱_heda3的博客-CSDN博客_倒频谱

1、DFT算法 

DFT的数学计算表达式为:

长度为N的离散时间信号x(n),做N点离散傅里叶变换如下:

  X(k)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}

其中k=0,1,2,...N-1

其中W_{N}=e^{-j2\frac{ \pi }{N}}

运算量表述为:

依据上述公式可知,做1点DFT,需要N次复数乘法、N-1次复数加法

做N点DFT,则需要N*N次复数乘法、N*(N-1)次复数加法

当N为256点时,所需运算量65536次复数乘法、65280次复数加法

N=512点时,所需运算量262144次复数乘法、261632次复数加法

N=1024点时,所需运算量1048576次复数乘法、1047552次复数加法

可见当N点从256到1024点变化时,DFT算法的计算量从万级到百万级。

2、FFT算法

2.1 分类

分为按照时间抽取(在时间上将信号长度逐步减少)和按照频率抽取

依据抽取长度分为基2、基4

基2 DIT(时间抽取) FFT  也称为Cooley-Tukey algorithm 库利图基算法

基2 DIF(频率抽取) FFT

基4 FFT

分裂基FFT(包含两种不同基的混合计算)

 2.2 以基2 DIT(时间抽取) FFT 算法为例

基于基2时间抽取将信号划分为两部分分别计算FFT(信号长度N要求为N=2的整数倍):

X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}=\sum_{n=0}^{N/2-1}x(2n)W_{N}^{k2n}+\sum_{n=0}^{N/2-1}x(2n+1)W_{N}^{k(2n+1)}                          1)

其中k=0,1,2,...N-1

复数运算的特性

W_{N}^{kn}=e^{-j2\frac{ \pi }{N}kn}

对称性: 

 W_{N}^{nk}=W_{N}^{-nk}=W_{N}^{(N-n)k}

周期性:

 W_{N}^{nk}=W_{N}^{(n+N)k}

可约性:

 W_{N}^{nk}=W_{mN}^{mnk} =W_{N/m}^{nk/m}

常见的计算 

W_{N}^{0}=1

W_{N}^{N/2}=-1

W_{N}^{N/4}=-j

2.2.1 一次分解 

依据上述复数运算的特性的可约性,则1)化简为:

X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}=\sum_{n=0}^{N/2-1}x(2n)W_{N/2}^{kn}+W_{N}^{k}\sum_{n=0}^{N/2-1}x(2n+1)W_{N/2}^{kn}     2)

             X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}=X_{0}(k)+W_{N}^{k}X_{1}(k)                                                  3)

              其中k=0,1,2,...N-1

利用特性:

W_{N}^{k+N/2}=W_{N}^{N/2}W_{N}^{k}=-W_{N}^{k}

则3)可表述为:

                            X(k)=X_{0}(k)+W_{N}^{k}X_{1}(k)                                                 4)

X(k+N/2)=X_{0}(k)-W_{N}^{k}X_{1}(k)                    

                               其中k=0,1,2,...N/2-1 

用如下的蝶形方式表述为3式和4式:

 两次复数运算:

 一次复数运算:

也即是N点DFT包含:2个 N/2点DFT和N/2个蝶形运算,一个蝶形运算包含一次复数乘法和两次复数加法

上述:做N点DFT,则需要N*N次复数乘法、N*(N-1)次复数加法

则2个N/2点DFT,则需要2*(N/2*N/2)=N^{^{2}}/2次复数乘法,2*(N/2)*(N/2-1)=N(N/2-1)次复数加法运算;蝶形运算次数:N/2次复数乘法,N次复数加法。

因此总的复数乘法计算:N(N+1)/2    总的复数加法次数:N^{^{2}}/2

通过上述的一次分解前后的运算量分析,可见经过一次分解后(信号按照奇偶数将N点DFT划分为N/2点DFT,并将两个N/2点DFT组合的方式),其运算量降低了一半,计算效率得到了提升。

2.2.2 多次分解

当N一直分解下去直到DFT的点数为2时,最小的计算单元为一个基本的蝶形运算,因此由于信号长度最初定义为N=2的整数倍,也即是N=2^{^{M}},因此N点DFT运算可以分解为M级蝶形运算,每一级为N/2个蝶形运算。

通过上述的FFT计算方法,则N点FFT运算需要M*N/2个蝶形运算,复数乘法次数:

N/2*M=N/2*log_{2}^{N}

复数加法次数:

   N/2*2*M=N*log_{2}^{N}

 

当N点从256到1024点变化时,FFT算法的计算量从千级到万级。可见FFT运算速度较DFT得到较大的提升。

    现在我们可以明显知道FFT到底快在哪里,因为经过对信号的逐级分解,将大点DFT划分为小点DFT计算,也即是N点FFT若基于基2抽取方法,则需要log_{2}^{N}级分解,N点DFT最终划分为2点DFT计算,并结合指数运算的特性,减少冗余计算,使得运算量大为减小。

 参考

【1】《数字信号处理》

【2】如何利用FFT(基2时间以及基2频率)信号流图求序列的DFT

 

相关内容

热门资讯

oppo安卓版系统设置,全面解... 亲爱的手机控们,你是不是也和我一样,对OPPO安卓版系统的设置充满了好奇?想要让你的OPPO手机更加...
安卓系统是什么cp,CP架构下... 你有没有想过,你的手机里那个默默无闻的安卓系统,其实就像是一个超级贴心的CP(情侣搭档)呢?没错,就...
系统垃圾清理大师 安卓,安卓手... 手机里的垃圾文件是不是让你头疼不已?别急,今天我要给你介绍一位安卓系统里的“清洁小能手”——系统垃圾...
安卓系统分为几层,安卓系统分层... 你知道吗?安卓系统,这个陪伴我们手机生活的“小助手”,其实它内部结构可是相当复杂的呢!今天,就让我带...
系统最像苹果的安卓,揭秘最像苹... 你有没有发现,现在的安卓手机越来越像苹果了?没错,就是那个以简洁设计和流畅体验著称的苹果。今天,就让...
安卓更新13系统游戏,性能升级... 你知道吗?最近安卓系统又来了一次大变身,那就是安卓13系统!这次更新可是带来了不少惊喜,尤其是对那些...
安卓系统开机出错了,安卓系统开... 手机突然开不了机了,这可怎么办?别急,让我来帮你分析一下安卓系统开机出错的那些事儿。一、安卓系统开机...
vovg是安卓系统吗,安卓系统... 你有没有听说过Vovg这个操作系统?最近,这个名词在数码圈里可是引起了不小的热议呢!很多人都在问,V...
谷歌终止安卓系统更新,影响与未... 你知道吗?最近科技圈可是炸开了锅,因为谷歌突然宣布了一项重大决定——终止对某些安卓系统的更新!这可不...
塞班系统比安卓好,超越安卓的卓... 你知道吗?在手机操作系统的大战中,塞班系统和安卓系统一直是你争我斗的态势。但你知道吗?塞班系统在某些...
安卓系统手机便宜测评,深度测评... 你有没有想过,为什么安卓系统手机总是那么便宜呢?是不是觉得它们质量不好?别急,今天我就要带你深入了解...
安卓怎么扫描门禁系统,安卓设备... 你有没有想过,家里的门禁系统竟然也能用手机轻松搞定?没错,就是那个你每天进出都离不开的安卓手机!今天...
安卓系统账号注册过程,安卓系统... 你终于决定加入安卓系统的大家庭啦! 想必你对这个系统充满了期待,不过别急,注册账号可是第一步哦!今天...
日产天籁的安卓系统,智能驾驶体... 你有没有注意到,最近开车的朋友们都在议论纷纷,说他们的日产天籁换了个新玩意儿——安卓系统!这可不是什...
安卓系统怎么下载闹钟,安卓系统... 你有没有发现,每天早晨闹钟一响,整个人就像被电击了一样,瞬间清醒?没错,闹钟可是我们生活中不可或缺的...
手机系统设置铃声安卓,个性化定... 手机里那首动听的铃声,是不是让你每次听到都忍不住嘴角上扬呢?今天,就让我带你一起探索安卓手机系统设置...
安卓电脑双系统平板,畅享多模态... 你有没有想过,一台平板电脑既能满足你办公的需求,又能让你畅享娱乐时光?现在,有一种神奇的设备——安卓...
创维电视安卓系统2.3,回顾经... 你有没有发现家里的创维电视有点儿“老态龙钟”了?别急,别急,今天就来给你揭秘一下这款电视的“内心世界...
如何破解车载安卓系统,轻松解锁... 如何破解车载安卓系统:揭秘背后的技术与风险在当今这个数字化飞速发展的时代,汽车已经不仅仅是一种交通工...
安卓机上的windows系统,... 你有没有想过,把Windows系统的强大功能搬到安卓机上?想象那可是个让人眼前一亮的操作体验呢!今天...