Python解题 - CSDN周赛第29期 - 争抢糖豆
创始人
2024-05-26 14:38:14
0

本期问哥是志在必得,这本算法书我已经觊觎许久,而之前两次因为种种原因未能如愿。因此,问哥这几天花了不少时间,把所有之前在每日一练做过的题目重新梳理了一遍。苦心人,天不负,感谢官方大大!


第一题:订班服

小A班级订班服了! 可是小A是个小糊涂鬼,整错了好多人的衣服的大小。 小A只能自己掏钱包来补钱了。 小A想知道自己至少需要买多少件衣服。

输入描述:第一行输入一个整数n。(1<=n<=100)表示衣服的数量。 以下n行输入n个尺码。表示订单中衣服的尺码。 接下来n行输入n个尺码。小A订的衣服尺码。 尺码表:M,S,L,XL,XLL,XLLL,XLLLL,XLLLLL。

输出描述:输出至少需要买多少件衣服。

示例:

示例
输入

2

XL
X
M
X

输出1

分析

简单题。需要 n 件衣服,买了 n 件衣服,所以只要把需要的 n 件衣服每种尺码的个数,减去已购买的衣服相应尺码的个数,如果大于0就说明该尺码还需要购买。所以最直接的办法就是用哈希表记录每种尺码的个数,然后再逐个检查。

Python已经提供了内置Counter类,可以自动生成字典,而且支持加减法,连逐个检查这一步都省去了:直接相减,剩下的数字加在一起就是答案。

参考代码

n = int(input().strip())
arr1 = [input().strip() for _ in range(n)]
arr2 = [input().strip() for _ in range(n)]
from collections import Counter
clothes = Counter(arr1) - Counter(arr2)
print(sum(clothes.values()))

第二题:争抢糖豆

抓糖豆,小Q与小K都喜欢吃糖豆。 但是糖豆分两种,超甜糖豆和普通糖豆。 现在有w个超甜糖豆和b个普通糖豆。 小Q和小K开始吃糖豆,他们决定谁先吃到超甜糖豆谁就获胜。 小K每次吃的时候会捏碎一颗糖豆。 小Q先吃,小Q想知道自己获胜的概率。 如果两个人都吃不到超甜糖豆小K获胜。

输入描述:输入两个整数w,b。(0<=w,b<=1000)

输出描述:答案保留9位小数。

示例:

示例
输入1 3
输出0.500000000

分析

也是以前考过的老题了。可以用递归或动态规划来做,但本题的状态转移不太容易一眼发现,所以可能不少人会觉得难。因为问到概率(胜率),所以本质上还是需要用数学来表达。

以动态规划为例(递归容易超时),我们用 dp[w][b] 表示当有 w 颗超甜糖豆,和 b 颗普通糖豆时自己的胜率。因为先吃到超甜糖豆就获胜了,所以自己要想获胜,只能分成两种情况:

  1. 先吃到超甜糖豆,概率是 \frac{w}{w+b}  ,此情况下直接获胜;
  2. 先吃到普通糖豆,但是对手也吃到普通糖豆,所以游戏继续,自己还有获胜的可能。(这里有一个特判的情况:如果只有一颗普通糖豆,而自己先吃到普通糖豆的话,无论如何也是输,后面自然就不用算了。)因此,自己和对手都吃到普通糖豆的概率是 \frac{b}{w+b} * \frac{b-1}{w+b-1}  。(如果一时看不懂可以多琢磨几遍,乘号左边是自己吃到普通糖豆的概率,右边是自己吃完后对方也吃到普通糖豆的概率,看懂了再继续。)

如果没有“捏碎糖豆”的操作,分析到这就结束了,状态转移就是把这两种情况的胜率加在一起,方程如下:

dp[w][b]=\frac{w}{w+b}+\frac{b}{w+b}*\frac{b-1}{w+b-1}*dp[w][b-2]

(因为自己和对手总共吃了两颗普通糖豆,所以上面第二种情况的概率还要乘以 dp[w][b-2] 才是胜率。)

如果上面的内容理解了,我们再来分析“捏碎糖豆”的情况。

捏碎糖豆也有两种情况:

  1. 捏碎了普通糖豆。影响不大,但是上面的第二种状态要接着乘上捏碎普通糖豆的概率,再乘以 dp[w][b-3] 。合在一起的胜率就是 \frac{b}{w+b}*\frac{b-1}{w+b-1}*\frac{b-2}{w+b-2}*dp[w][b-3] 。
  2. 捏碎了超甜糖豆。则二人虽不分胜负,理论上自己还存在胜利的可能(如果还剩下超甜糖豆的话),但是同样地,状态转移方程变了,胜率变成了:\frac{b}{w+b}*\frac{b-1}{w+b-1}*\frac{w}{w+b-2}*dp[w-1][b-2] 。

这两种捏碎糖豆的情况属于同一决策层级,可以加在一起。于是把捏碎糖豆考虑进来,得到最终的状态转移方程如下:

dp[w][b]=\frac{w}{w+b}+\frac{b}{w+b}*\frac{b-1}{w+b-1}*(\frac{b-2}{w+b-2}*dp[w][b-3]+\frac{w}{w+b-2}*dp[w-1][b-2])

此外,如之前所述,还要考虑几个特判的情况:

  1. 没有超甜糖豆,胜率为0,不用计算。
  2. 没有普通糖豆,胜率100%。
  3. 只有一颗普通糖豆,胜率为\frac{w}{w+b} ,因为如果自己先吃到普通糖豆,必输。

很显然,上面第二、三可以合并,而第一条可以在初始化的时候把 dp[0][j],0\leq j\leq b 的时候设置为0。代码如下:

参考代码

w, b = map(int, input().split())
dp = [[0]*(b+1) for _ in range(w+1)]
for i in range(1, w+1):for j in range(b+1):if j <= 1:dp[i][j]=i/(i+j)else:dp[i][j]=i/(i+j)+j/(i+j)*(j-1)/(i+j-1)*((j-2)/(i+j-2)*dp[i][j-3]+i/(i+j-2)*dp[i-1][j-2])
print(f"{dp[w][b]:.9f}")

输出结果的时候要注意,题目要求必须保留9位小数,空位用0补全,所以要设置占位符。


第三题:走楼梯

现在有一截楼梯,根据你的腿长,你一次能走 1 级或 2 级楼梯,已知你要走 n 级楼梯才能走到你的目的楼层,请实现一个方法,计算你走到目的楼层的方案数。

输入描述:输入整数n。(1<=n<=50)

输出描述:输出方案数。

示例:

示例
输入5
输出

8

分析

很明显,答案是斐波那契数列。因为一次只能走 1 级或 2 级楼梯,所以第 n 级阶梯可以由 n-1 级阶梯走过来,也可以由 n-2 级阶梯走过来。如果用函数 f(n) 表示走上第 n 级阶梯的方案数,可得

f(n) = f(n-1)+f(n-2)

因为本题 n 范围较小(1<=n<=50),所以使用递归来做应该也没问题。不过更常用的做法是递推,也算是斐波那契的模板题了。

参考代码

n = int(input().strip())
a = b = 1
for _ in range(n):a, b = b, a+b
print(a)

第四题:打家劫舍

一个小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

输入描述:输入一个正整数n代表房屋的数量(n≤100),接着输入n个非负整数代表每间房屋的现金数量

输出描述:小偷能偷取的最大金额。

示例:

示例
输入4
1 2 3 1
输出4

分析

力扣原题,经典的打家劫舍系列,但凡刷过点题的相信都做过。而且这里选取的是该系列最简单的一道,动态规划入门题,相关题解太多了,这里问哥只简单说两句吧。

因为相邻的房屋不能同时被盗,所以小偷在当前房屋只有两种选择:不偷当前房屋——继承上个房屋可偷取的的最大金额,偷当前房屋——上上个房屋可偷取的最大金额(因为上个房屋不能偷)加上当前房屋的金额,而当前房屋可偷取的最大金额就等于这两种选择中较大的金额。

如果用 f(i) 代表当前房屋可偷取的最大金额,H_{i} 表示当前房屋的金额,可用公式表示如下:

f(i)=max({f(i-1),f(i-2)+H_{i}})

类似斐波那契数列,可以看出 f(i) 仅由 f(i-1) 和 f(i-2) 得到(H_{i} 是给定数组),所以可以使用滚动数组优化空间,换句话说就是只需要额外两个变量循环保存 f(i-1) 和 f(i-2) 的值即可。

参考代码

n = int(input().strip())
arr = [int(item) for item in input().strip().split()]
a = b = 0
for i in arr:a, b = b, max(b, a+i)
print(b)

相关内容

热门资讯

安卓子系统windows11,... 你知道吗?最近科技圈可是炸开了锅,因为安卓子系统在Windows 11上的兼容性成了大家热议的话题。...
电脑里怎么下载安卓系统,电脑端... 你有没有想过,你的电脑里也能装上安卓系统呢?没错,就是那个让你手机不离手的安卓!今天,就让我来带你一...
索尼相机魔改安卓系统,魔改系统... 你知道吗?最近在摄影圈里掀起了一股热潮,那就是索尼相机魔改安卓系统。这可不是一般的改装,而是让这些专...
安卓系统哪家的最流畅,安卓系统... 你有没有想过,为什么你的手机有时候像蜗牛一样慢吞吞的,而别人的手机却能像风一样快?这背后,其实就是安...
安卓最新系统4.42,深度解析... 你有没有发现,你的安卓手机最近是不是有点儿不一样了?没错,就是那个一直在默默更新的安卓最新系统4.4...
android和安卓什么系统最... 你有没有想过,你的安卓手机到底是用的是什么系统呢?是不是有时候觉得手机卡顿,运行缓慢,其实跟这个系统...
平板装安卓xp系统好,探索复古... 你有没有想过,把安卓系统装到平板上,再配上XP系统,这会是怎样一番景象呢?想象一边享受着安卓的便捷,...
投影仪装安卓系统,开启智能投影... 你有没有想过,家里的老式投影仪也能焕发第二春呢?没错,就是那个曾经陪你熬夜看电影的“老伙计”,现在它...
安卓系统无线车载carplay... 你有没有想过,开车的时候也能享受到苹果设备的便利呢?没错,就是那个让你在日常生活中离不开的iOS系统...
谷歌安卓8系统包,系统包解析与... 你有没有发现,手机更新换代的速度简直就像坐上了火箭呢?这不,最近谷歌又发布了安卓8系统包,听说这个新...
微软平板下软件安卓系统,开启全... 你有没有想过,在微软平板上也能畅享安卓系统的乐趣呢?没错,这就是今天我要跟你分享的神奇故事。想象你手...
coloros是基于安卓系统吗... 你有没有想过,手机里的那个色彩斑斓的界面,背后其实有着一个有趣的故事呢?没错,我要说的就是Color...
安卓神盾系统应用市场,一站式智... 你有没有发现,手机里的安卓神盾系统应用市场最近可是火得一塌糊涂啊!这不,我就来给你好好扒一扒,看看这...
黑莓平板安卓系统升级,解锁无限... 亲爱的读者们,你是否还记得那个曾经风靡一时的黑莓手机?那个标志性的全键盘,那个独特的黑莓体验,如今它...
安卓文件系统采用华为,探索高效... 你知道吗?最近安卓系统在文件管理上可是有了大动作呢!华为这个科技巨头,竟然悄悄地给安卓文件系统来了个...
深度系统能用安卓app,探索智... 你知道吗?现在科技的发展真是让人惊叹不已!今天,我要给你揭秘一个超级酷炫的话题——深度系统能用安卓a...
安卓系统的分区类型,深度解析存... 你有没有发现,你的安卓手机里藏着不少秘密?没错,就是那些神秘的分区类型。今天,就让我带你一探究竟,揭...
安卓系统铠无法兑换,揭秘无法兑... 最近是不是有很多小伙伴在玩安卓系统的游戏,突然发现了一个让人头疼的问题——铠无法兑换!别急,今天就来...
汽车安卓系统崩溃怎么刷,一键刷... 亲爱的车主朋友们,你是否曾遇到过汽车安卓系统崩溃的尴尬时刻?手机系统崩溃还能重启,但汽车系统崩溃了,...
miui系统可以刷安卓p系统吗... 亲爱的手机控们,你是否对MIUI系统情有独钟,同时又对安卓P系统的新鲜功能垂涎欲滴?今天,就让我带你...