多变量微积分1
创始人
2024-05-26 14:56:30
0

叉乘的定义:

混合积的几何意义:就是平行六面体的体积

 三个向量共面的充要条件:

 这里要注意,混合机对应的就是三阶行列式的值。

平面方程:

点法式:

 一般式:

截距式:

三点式:

直线方程

点向式:

 参数式:

两点式:

一般式:

点到平面的距离:

点到直线的距离:

其他空间解析几何暂时不列举了,需要的时候再复习好了。

接下来是重点 多元函数微分学和积分学。

判断二元函数极限不存在的方法:

 多元函数的连续:

 全增量和偏增量:

偏导数的定义:

 多重偏导和顺序无关:

证明:

不要求,用四次拉格朗日定理 

全微分的定义:

这里要注意,虽然是定义,但这个定义可以推倒出来的:

按照《简明微积分》里面的推倒:

\Delta f=f(x+\Delta x,y+\Delta y)-f(x,y)

     =f(x+\Delta x,y+\Delta y)-f(x,y+\Deltay) +f(x,y + \Deltay)-f(x,y)

用微分中值定理:

    =f'_x(x+\theta _1\Delta x,y+\Delta y)\Delta x + f'_y(x,y+\theta _2\Delta y)\Delta y

 当增量x,y都趋向于0的时候,

\Delta f=f'_xdx + f'_ydy + o(p)

对于高阶无穷小量的说明,我们来看:

从理解上说,p=\sqrt{\Delta x^{2} + \Delta y^2}  和之前单个变量的距离是一致的。

按照一元变量的定义:

\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=f'(x_0)

所以\frac{\Delta y}{\Delta x}-f'(x_0)=\alpha

于是\Delta y = f'(x_0)\Delta x + \alpha \Delta x

后面的就是\Delta x的高阶无穷小。

对于多元微积分来说,下面的分母应该就是自变量改变量的距离,一般我们对距离的定义就是

常规的\sqrt{\Delta x^{2} + \Delta y^2}

高阶无穷小量p的另一种表示形式:

那么我们怎么证明A就是z对x的偏导呢?

令这个时候,\Delta y=0

那么\Delta _xz=A\Delta x + \alpha \Delta x

于是f'_x=\lim_{\Delta x\rightarrow 0}\Delta _xz/\Delta x = A

同理可证明B

复合偏导数求导法则证明:

图中有笔误,z误写成了u,理解就好

 

全微分一阶形式不变性的证明:

 方程确定多元函数求偏导的方法:

可以复习下克拉默法则:

克拉默法则是怎么想出来的? - 知乎 

方向导数定理:

证明:

 

 梯度:

 

几何意义:

 梯度是方向导数中最大的一个。

拉格朗日数乘法:

 

二重积分:

非规则区域的和式极限为0(边界曲线的面积为0)

 

二重积分的计算:

把二重积分化成累次积分

 

 

二重积分换元,引出了雅克比行列式,

这里我们看《简明微积分》里面的证明:

书上有点笔误,知乎上有个简略证明:重积分换元的公式,证明,解法,例题 - 知乎

我们也简单证明下:

 图还是按照这个图,证明按照《简明微积分》

取四个点,M1,M2,M3,M4

坐标分别为:

M1:x1,y1

M2:x1 + x'_udu + o(p), y1 + y'_udu + o(p)

M3:可以忽略

M4:x1 + x'_vdv + o(p), y1 + y'_vdv + o(p)

因爲近似成平行四边形,所以直接取两相邻的边叉乘即可。

M1M2: x'_udu + o(p), y'_udu + o(p)

M1M4:x'_vdv + o(p), y'_vdv + o(p)

根据叉乘公式:

就是( x'_udu + o(p))( y'_vdv + o(p))-( y'_udu + o(p))( x'_vdv + o(p))

展开:

x'_uy'_vdudv - x'_vy'_ududv + Ao(p) + Bo(p^2)​​​​​​​

知乎上是没有这个高阶无穷小的项的,但我觉得简明微积分里的更加正确,只有加了d的微分才可以舍弃高阶无穷小,而上面这个是等于号,我认为不能舍弃高阶无穷小。

让我们重新梳理思路:

首先,从体积的角度去理解这个二重积分:\iint_{}^{}f(x,y)dxdy

就是对于区域D下的面积,和每个微元的函数值的积分,最终形成体积的概念。就是求和公式:

\sum_{i=1}^{n}f(x_i,y_i)\Delta A

而通过换元u,v, f(x(u,v),y(u,v)) 可以看成复合函数f(T(u,v))

还是从求和公式出发先:

\sum_{i=1}^{n}f(u_i,v_i)\Delta A'

核心就在于求和公式中\Delta A\Delta A'的区别

我认为简明微积分的做法更加正确。

首先毫无疑问

在标准坐标系xy下面,\Delta A=dxdy

在换元uv之后,这个标准的矩形会被扭曲掉,面积也会变成新的\Delta A'

因为要进行面积的比较,那么就必须放到同一个绝对时空下。而我们必须放到xy坐标系下的绝对空间中比较,因为f(ui,vi)是直接把x,y换成uv表达式的。它的值还是在xy坐标系下的值。

相关内容

热门资讯

安卓子系统windows11,... 你知道吗?最近科技圈可是炸开了锅,因为安卓子系统在Windows 11上的兼容性成了大家热议的话题。...
电脑里怎么下载安卓系统,电脑端... 你有没有想过,你的电脑里也能装上安卓系统呢?没错,就是那个让你手机不离手的安卓!今天,就让我来带你一...
索尼相机魔改安卓系统,魔改系统... 你知道吗?最近在摄影圈里掀起了一股热潮,那就是索尼相机魔改安卓系统。这可不是一般的改装,而是让这些专...
安卓系统哪家的最流畅,安卓系统... 你有没有想过,为什么你的手机有时候像蜗牛一样慢吞吞的,而别人的手机却能像风一样快?这背后,其实就是安...
安卓最新系统4.42,深度解析... 你有没有发现,你的安卓手机最近是不是有点儿不一样了?没错,就是那个一直在默默更新的安卓最新系统4.4...
android和安卓什么系统最... 你有没有想过,你的安卓手机到底是用的是什么系统呢?是不是有时候觉得手机卡顿,运行缓慢,其实跟这个系统...
平板装安卓xp系统好,探索复古... 你有没有想过,把安卓系统装到平板上,再配上XP系统,这会是怎样一番景象呢?想象一边享受着安卓的便捷,...
投影仪装安卓系统,开启智能投影... 你有没有想过,家里的老式投影仪也能焕发第二春呢?没错,就是那个曾经陪你熬夜看电影的“老伙计”,现在它...
安卓系统无线车载carplay... 你有没有想过,开车的时候也能享受到苹果设备的便利呢?没错,就是那个让你在日常生活中离不开的iOS系统...
谷歌安卓8系统包,系统包解析与... 你有没有发现,手机更新换代的速度简直就像坐上了火箭呢?这不,最近谷歌又发布了安卓8系统包,听说这个新...
微软平板下软件安卓系统,开启全... 你有没有想过,在微软平板上也能畅享安卓系统的乐趣呢?没错,这就是今天我要跟你分享的神奇故事。想象你手...
coloros是基于安卓系统吗... 你有没有想过,手机里的那个色彩斑斓的界面,背后其实有着一个有趣的故事呢?没错,我要说的就是Color...
安卓神盾系统应用市场,一站式智... 你有没有发现,手机里的安卓神盾系统应用市场最近可是火得一塌糊涂啊!这不,我就来给你好好扒一扒,看看这...
黑莓平板安卓系统升级,解锁无限... 亲爱的读者们,你是否还记得那个曾经风靡一时的黑莓手机?那个标志性的全键盘,那个独特的黑莓体验,如今它...
安卓文件系统采用华为,探索高效... 你知道吗?最近安卓系统在文件管理上可是有了大动作呢!华为这个科技巨头,竟然悄悄地给安卓文件系统来了个...
深度系统能用安卓app,探索智... 你知道吗?现在科技的发展真是让人惊叹不已!今天,我要给你揭秘一个超级酷炫的话题——深度系统能用安卓a...
安卓系统的分区类型,深度解析存... 你有没有发现,你的安卓手机里藏着不少秘密?没错,就是那些神秘的分区类型。今天,就让我带你一探究竟,揭...
安卓系统铠无法兑换,揭秘无法兑... 最近是不是有很多小伙伴在玩安卓系统的游戏,突然发现了一个让人头疼的问题——铠无法兑换!别急,今天就来...
汽车安卓系统崩溃怎么刷,一键刷... 亲爱的车主朋友们,你是否曾遇到过汽车安卓系统崩溃的尴尬时刻?手机系统崩溃还能重启,但汽车系统崩溃了,...
miui系统可以刷安卓p系统吗... 亲爱的手机控们,你是否对MIUI系统情有独钟,同时又对安卓P系统的新鲜功能垂涎欲滴?今天,就让我带你...