BP神经网络的梯度公式推导(三层结构)
创始人
2024-05-26 19:41:11
0
本站原创文章,转载请说明来自《老饼讲解-BP神经网络》bp.bbbdata.com

 

目录

一. 推导目标

1.1 梯度公式目标 

1.2 本文梯度公式目标

二. 网络表达式梳理

2.1 梳理三层BP神经网络的网络表达式

三. 三层BP神经网络梯度推导过程

3.1 简化推导目标

3.2 输出层权重的梯度推导

3.3 输出层阈值的梯度推导

3.4隐层权重的梯度推导

 3.5 隐层阈值的梯度推导

四. 推导结果总结

4.1 三层BP神经网络梯度公式


BP神经网络的训练算法基本都涉及到梯度公式,

本文提供三层BP神经网络的梯度公式和推导过程

一. 推导目标


BP神经网络的梯度推导是个复杂活,

在推导之前 ,本节先把推导目标清晰化

1.1 梯度公式目标 


训练算法很多,但各种训练算法一般都需要用到各个待求参数(w,b)在损失函数中的梯度,
因此求出w,b在损失函数中的梯度就成为了BP神经网络必不可少的一环,
求梯度公式,即求以下误差函数E对各个w,b的偏导:

\displaystyle \displaystyle \textbf{E}(W,b)=\dfrac{1}{M}\sum \limits _{m=1}^{M} \dfrac{1}{K}\sum \limits _{k=1}^{K} (\textbf{f}(\textbf{x})_{km}-\text{y}_{km})^2


\textbf{f}(\textbf{x})_{km}代表网络对第m个样本第k个输出的预测值,w,b就隐含在\textbf{f}(\textbf{x})

1.2 本文梯度公式目标


虽然梯度只是简单地求E对w,b的偏导,但E中包含网络的表达式f(x),就变得非常庞大,
求偏导就成了极度艰巨晦涩的苦力活,对多层结构通式的梯度推导稍为抽象,
本文不妨以最常用的三层结构作为具体例子入手,求出三层结构的梯度公式
 即:输入层-隐层-输出层 (隐层传递函数为tansig,输出层传递函数为purelin)

虽然只是三层的BP神经网络,

但梯度公式的推导,仍然不仅是一个体力活,还是一个细致活,

且让我们细细一步一步慢慢来


二. 网络表达式梳理


在损失函数E中包括了网络表达式,在求梯度之前,

先将表达式的梳理清晰,有助于后面的推导

2.1 梳理三层BP神经网络的网络表达式


网络表达式的参考形式
隐层传递函数为tansig,输出层传递函数为purelin的三层BP神经网络,
有形如下式的数学表达式
 

网络表达式的通用矩阵形式
 写成通用的矩阵形式为

\textbf{f}(\textbf{x}) = \textbf{W}^{(o)}\textbf{tansig}(\textbf{W}^{(h)}\textbf{x}+\textbf{b}^{(h)})+\textbf{b}^{(o)}

这里的\textbf{W}为矩阵,\textbf{x}\textbf{b}为向量,
上标(o)和(h)分别代表输出层(out)和隐层(hide),
例如,2输入,4隐节点,2输出的BP神经网络可以图解如下:

 


三. 三层BP神经网络梯度推导过程


本节我们具体推导误差函数对每一个待求参数w,b的梯度

3.1 简化推导目标


由于E的表达式较为复杂,
 不妨先将问题转化为"求单样本梯度"来简化推导表达式
 对于任何一个需要求偏导的待求参数w,都有:
\displaystyle \dfrac{\partial \textbf{E}}{\partial w} = \dfrac{\partial \dfrac{1}{M}\sum \limits _{m=1}^{M} \dfrac{1}{K}\sum \limits _{k=1}^{K} (\textbf{f}(\textbf{x})_{km}-\text{y}_{km})^2 }{\partial w} =\dfrac{1}{M}\sum \limits _{m=1}^{M}\dfrac{\partial \dfrac{1}{K}\sum \limits _{k=1}^{K}(\textbf{f}(\textbf{x})_{km}-\text{y}_{km})^2 }{\partial w} = \dfrac{1}{M}\sum \limits _{m=1}^{M}\dfrac{\partial \textbf{E}_m}{\partial w}
即损失函数的梯度,等于单个样本的损失函数的梯度之和(E对b的梯度也如此),
因此,我们先推导单个样本的梯度,最后再对单样本梯度求和即可。
现在问题简化为求
\dfrac{\partial\textbf{ E}_m}{\partial w} = \dfrac{\partial \dfrac{1}{K}\sum \limits _{k=1}^{K}(\textbf{f}(\textbf{x})_{k}-\text{y}_{k})^2 }{\partial w}

3.2 输出层权重的梯度推导


输出层权重梯度推导
输出层的权重为"输出个数*隐节点个数"的矩阵,
现推导任意一个权重wji (即连接第i个隐层与第j个输出的权重)的单样本梯度
如下:
\displaystyle \begin{aligned} \dfrac{\partial\textbf{ E}_m}{\partial w_\textbf{ji}^{(o)}} &= \dfrac{\partial \dfrac{1}{K}\sum \limits _{k=1}^{K}(\textbf{f}(\textbf{x})_\textbf{k}-\text{y}_\textbf{k})^2 }{\partial w_\textbf{ji}^{(o)}} \\&= \dfrac{1}{K}\sum \limits _{k=1}^{K}\dfrac{\partial (\textbf{f}(\textbf{x})_\textbf{k}-\text{y}_\textbf{k})^2 }{\partial w_\textbf{ji}^{(o)}} \\&= \dfrac{1}{K}\sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_\textbf{k}-\text{y}_\textbf{k})\dfrac{\partial \textbf{f}(\textbf{x})_\textbf{k} }{\partial w_\textbf{ji}^{(o)}} \end{aligned}
事实上,只有第j个输出\textbf{f(x)}_\textbf{j}是关于 w_\textbf{ji}^{(o)}的函数,也即对于其它输出 \dfrac{\partial \textbf{f}(\textbf{x})_{k(k\ne j )} }{\partial W} = 0
因此, 
上式即等于= \dfrac{1}{K}* 2 *(\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j})\dfrac{\partial \textbf{f}(\textbf{x})_\textbf{j} }{\partial w_\textbf{ji}}
继续求导
\displaystyle \begin{aligned} & \dfrac{1}{K}* 2 *(\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j})\dfrac{\partial \textbf{f}(\textbf{x})_\textbf{j} }{\partial w_\textbf{ji}^{(o)}} \\=& \color{blue}\dfrac{1}{K}* 2 *(\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j})\dfrac{\partial \left ( w_\textbf{j1}^{(o)}*\textbf{tansig}_\textbf{1}+...+w_\textbf{ji}^{(o)}*\textbf{tansig}_\textbf{i}+...+w_\textbf{jh}^{(o)}*\textbf{tansig}_\textbf{h}+b_\textbf{j}^{(o)} \right ) }{\partial w_\textbf{ji}^{(o)}} \\= &\dfrac{1}{K}* 2 *(\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j})*\textbf{tansig}_\textbf{i} \end{aligned}
\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j}是第j个输出的误差,简记为E_\textbf{j}                      
\textbf{tansig}_\textbf{i}是第j个隐节点的激活值,简记为A_\textbf{i}(A即Active)

上式即可写为
\dfrac{\partial \textbf{E}_m}{\partial w_\textbf{ji}^{(o)}} = \dfrac{1}{K}* 2 *E_\textbf{j}*A_\textbf{i}             
上述是单样本的梯度,
整体样本的梯度则应记为 

\displaystyle \dfrac{\partial \textbf{E}}{w_\textbf{ij}^{(o)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M} 2 *E_\textbf{jm}*A_\textbf{im}

 M,K为样本个数、输出个数                                         
E_\textbf{jm}=\textbf{f}(\textbf{x})_\textbf{jm}-\text{y}_\textbf{jm}是第m个样本第j个输出的误差      
A_\textbf{im}=\textbf{tansig}_\textbf{im}是第m个样本第i个隐节点的激活值    

3.3 输出层阈值的梯度推导


输出层阈值梯度推导
对于阈值b_\textbf{j}^{(o)}(第j个输出节点的阈值)的推导与权重梯度的推导是类似的,
只是上述标蓝部分应改为

\displaystyle \begin{aligned} \dfrac{\partial \textbf{E}_{m} }{\partial b_\textbf {j}^{(o)}} &= \dfrac{1}{K}* 2 *(\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j})\dfrac{\partial \left ( w_\textbf{j1}^{(o)}*\textbf{tansig}_\textbf{1}+...+w_\textbf{ji}^{(o)}*\textbf{tansig}_\textbf{i}+...+w_\textbf{jh}^{(o)}*\textbf{tansig}_\textbf{h}+b_\textbf{j}^{(o)} \right ) }{\partial b_\textbf{j}^{(o)}} \\&= \dfrac{1}{K}* 2 *(\textbf{f}(\textbf{x})_\textbf{j}-\text{y}_\textbf{j}) \end{aligned}
简记为
\dfrac{\partial \textbf{E}_m}{\partial b_\textbf{j}^{(o)}} =\dfrac{1}{K}* 2 *E_\textbf{j}
上述是单样本的梯度,
整体样本的梯度则应记为 

\dfrac{\partial \textbf{E}}{\partial b_\textbf{j}^{(o)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M}* 2 *E_\textbf{jm}
 M,K为样本个数、输出个数                
E_\textbf{jm}=\textbf{f}(\textbf{x})_\textbf{jm}-\text{y}_\textbf{jm}​是第m个样本第j个输出的误差      

3.4隐层权重的梯度推导


隐层的权重为"隐节点个数*输入个数"的矩阵,
现推导任意一个权重w_\textbf{ji}^{(h)}(即连接第i个输入与第j个隐节点的权重)的单样本梯度
如下:
\displaystyle \begin{aligned} \dfrac{\partial\textbf{ E}_m}{\partial w_\textbf{ji}^{(h)}} &= \dfrac{\partial \dfrac{1}{K}\sum \limits _{k=1}^{K}(\textbf{f}(\textbf{x})_{k}-\text{y}_{k})^2 }{\partial w_\textbf{ji}^{(h)}} \\&= \dfrac{1}{K} \sum \limits _{k=1}^{K}\dfrac{\partial (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})^2 }{\partial w_\textbf{ji}^{(h)}} \\&= \dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})\dfrac{\partial \textbf{f}(\textbf{x})_{k} }{\partial w_\textbf{ji}^{(h)}} \\&=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})\dfrac{\partial \left ( w_\textbf{k1}^{(o)}*\textbf{tansig}_\textbf{1}+...w_\textbf{kj}^{(o)}*\textbf{tansig}_\textbf{j}+...+w_\textbf{kh}^{(o)}*\textbf{tansig}_\textbf{h}+b_\textbf{k}^{(o)} \right ) }{\partial w_\textbf{ji}^{(h)}} \end{aligned}

只有第j个tansig是关于 w_\textbf{ji}^{(h)}的函数,所以上式可以写成

 =\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})\dfrac{\partial \left ( w_\textbf{kj}^{(o)}*\textbf{tansig}_\textbf{j} \right ) }{\partial w_\textbf{ji}^{(h)}}
继续求导
 \displaystyle \begin{aligned} &=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})\dfrac{\partial \left ( w_\textbf{kj}^{(o)}*\textbf{tansig}_\textbf{j} \right ) }{\partial w_\textbf{ji}^{(h)}} \\&=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left ( \textbf{tansig}_\textbf{j} \right ) }{\partial w_\textbf{ji}^{(h)}} \\&=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left (\textbf{tansig}(w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) \right ) }{\partial w_\textbf{ji}^{(h)}} \end{aligned} \color{blue}=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left (\textbf{tansig}(w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) \right ) }{\partial (w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) }\dfrac{\partial (w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) }{\partial w_\textbf{ji}^{(h)}} \displaystyle \begin{aligned} &=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left (\textbf{tansig}(w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) \right ) }{\partial (w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) }x_\textbf{i} \\&=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left (\textbf{tansig}(\textbf{w}_\textbf{j:}^{(h)}\textbf{x}+b_\textbf{j}^{(h)}) \right ) }{\partial (\textbf{w}_\textbf{j:}^{(h)}\textbf{x}+b_\textbf{j}^{(h)})}x_\textbf{i} \end{aligned}
又由\textbf{tansig}'(x) = 1-\textbf{tansig}^2(x)
所以上式为:
\dfrac{\partial \textbf{E}_m }{\partial w_\textbf{ji}^{(h)}} =\dfrac{1}{K} \sum \limits _{k=1}^{K}2 *(\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}* \left (1-\textbf{tansig}_\textbf{j}^2\right ) x_\textbf{i}
简写为
\displaystyle \dfrac{\partial \textbf{E}_m }{\partial w_\textbf{ji}^{(h)}} =\dfrac{1}{K} \sum \limits _{k=1}^{K}2 *E_k*w_\textbf{kj}^{(o)}* \left (1-A_\textbf{j}^2\right ) x_\textbf{i}
上述是单样本的梯度,对整体样本则有:
\displaystyle \dfrac{\partial \textbf{E} }{\partial w_\textbf{ji}^{(h)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M} \sum \limits _{k=1}^{K}2 *E_\textbf{km}*w_\textbf{jk}^{(o)}* \left (1-A_\textbf{jm}^2\right ) x_\textbf{im}
 M,KM,K为样本个数、输出个数                                              
E_\textbf{km}=\textbf{f}(\textbf{x})_\textbf{km}-\text{y}_\textbf{km}​是第m个样本第k个输出的误差        
A_\textbf{im}=\textbf{tansig}_\textbf{im}是第m个样本第i个隐节点的激活值           
x_\textbf{im}​是第m个样本第i个输入                                                  

 3.5 隐层阈值的梯度推导


隐层阈值梯度推导
对于阈值b_\textbf{j}^{(h)}  ​(第j个隐节点的阈值)的推导与隐层权重梯度的推导是类似的,
只是蓝色部分应改为

\displaystyle \begin{aligned} &=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left (\textbf{tansig}(w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) \right ) }{\partial (w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) }\dfrac{\partial (w_\textbf{j1}^{(h)}x_\textbf{1}+...+w_\textbf{ji}^{(h)}x_\textbf{i}+...+w_\textbf{jn}^{(h)}x_\textbf{n}+b_\textbf{j}^{(h)}) }{\partial b_\textbf{j}^{(h)}} \\&=\dfrac{1}{K} \sum \limits _{k=1}^{K}2 (\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}*\dfrac{\partial \left (\textbf{tansig}(\textbf{w}_\textbf{j:}^{(h)}\textbf{x}+b_\textbf{j}^{(h)}) \right ) }{\partial (\textbf{w}_\textbf{j:}^{(h)}\textbf{x}+b_\textbf{j}^{(h)}) } \end{aligned}
又由\textbf{tansig}'(x) = 1-\textbf{tansig}^2(x)
所以上式为:
\dfrac{\partial \textbf{E}_m }{\partial b_\textbf{j}^{(h)}} =\dfrac{1}{K} \sum \limits _{k=1}^{K}2 *(\textbf{f}(\textbf{x})_{k}-\text{y}_{k})*w_\textbf{kj}^{(o)}* \left (1-\textbf{tansig}_\textbf{j}^2\right )
简写为\displaystyle \dfrac{\partial \textbf{E}_m }{\partial b_\textbf{j}^{(h)}} =\dfrac{1}{K} \sum \limits _{k=1}^{K}2 *E_k*w_\textbf{kj}^{(o)}* \left (1-A_\textbf{j}^2\right )
上述是单样本的梯度,对整体样本则有:
\displaystyle \dfrac{\partial \textbf{E} }{\partial b_\textbf{j}^{(h)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M} \sum \limits _{k=1}^{K}2 *E_\textbf{km}*w_\textbf{jk}^{(o)}* \left (1-A_\textbf{jm}^2\right )
 M,K为样本个数、输出个数                                              
E_\textbf{km}=\textbf{f}(\textbf{x})_\textbf{km}-\text{y}_\textbf{km}是第m个样本第k个输出的误差        
A_\textbf{im}=\textbf{tansig}_\textbf{im}是第m个样本第i个隐节点的激活值         

   

四. 推导结果总结


4.1 三层BP神经网络梯度公式


输出层梯度公式
输出层权重梯度: \displaystyle \dfrac{\partial \textbf{E}}{w_\textbf{ji}^{(o)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M} 2 *E_\textbf{jm}*A_\textbf{im}                       
输出层阈值梯度: \displaystyle \dfrac{\partial \textbf{E}}{\partial b_\textbf{j}^{(o)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M}* 2 *E_\textbf{jm}                                            
隐层梯度公式
隐层权重梯度: \displaystyle \dfrac{\partial \textbf{E} }{\partial w_\textbf{ji}^{(h)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M} \sum \limits _{k=1}^{K}2 *E_\textbf{km}*w_\textbf{jk}^{(o)}* \left (1-A_\textbf{jm}^2\right ) x_\textbf{im}
隐层阈值梯度: \displaystyle \dfrac{\partial \textbf{E} }{\partial b_\textbf{j}^{(h)}} = \dfrac{1}{M*K}\sum\limits_{m=1}^{M} \sum \limits _{k=1}^{K}2 *E_\textbf{km}*w_\textbf{jk}^{(o)}* \left (1-A_\textbf{jm}^2\right )      
✍️符号说明
 M,K为样本个数、输出个数                                               
E_\textbf{km}=\textbf{f}(\textbf{x})_\textbf{km}-\text{y}_\textbf{km}是第m个样本第k个输出的误差        
A_\textbf{im}=\textbf{tansig}_\textbf{im}​是第m个样本第i个隐节点的激活值           
x_\textbf{im}是第m个样本第i个输入                                                  


 相关文章

​《BP神经网络梯度推导》

​​​​​​《BP神经网络提取的数学表达式》

《一个BP的完整建模流程》

相关内容

热门资讯

安卓系统相册软件下载,下载与使... 手机里的相册是不是已经满满当当,想要给它们找个新家?别急,今天就来给你安利几款超好用的安卓系统相册软...
安卓9系统优化软件,解锁流畅体... 你有没有发现,自从你的安卓手机升级到了安卓9系统,运行速度好像变得更快了?是不是觉得手机变得更加流畅...
各厂商安卓系统对比,性能、特色... 你有没有发现,现在手机市场上安卓系统的竞争可是相当激烈呢!各大厂商纷纷推出自己的特色系统,让人眼花缭...
车机进入安卓系统,智能驾驶体验... 你有没有发现,最近你的车机系统好像变得不一样了?没错,车机系统正在悄悄地进入安卓的大家庭!这可不是什...
安卓系统自带壁纸高清,自带高清... 亲爱的手机控们,你是否曾为安卓系统自带的那些高清壁纸而驻足欣赏?那些色彩斑斓、风格迥异的画面,是不是...
安卓机换成钟表系统,探索智能穿... 你有没有想过,你的安卓手机其实也可以换上钟表系统呢?是的,你没听错,就是那种优雅、简洁、充满艺术感的...
安卓lcs操作系统,轻量级、安... 你知道吗?在智能手机的世界里,有一个操作系统可是相当出名的,那就是安卓LCS操作系统。它就像一位魔法...
安卓系统微信包月,畅享无限制沟... 你知道吗?在咱们这个手机不离手的年代,微信可是咱们日常生活中不可或缺的好帮手。不过,你知道吗?安卓系...
我想换安卓系统,系统升级换新体... 亲爱的读者,你是否也有过这样的冲动?看着身边的朋友纷纷换上了安卓系统,心里痒痒的,也想尝试一下?没错...
用了苹果换安卓系统,系统更迭背... 你知道吗?最近我可是经历了一场大变身呢!是的,你没听错,我用苹果手机换成了安卓系统。这可不是一个小决...
手机刷机系统安卓,解锁手机潜能... 你有没有想过,你的手机是不是已经有点儿“老态龙钟”了呢?别急,别急,今天就来给你揭秘如何给手机来个焕...
安卓pe10系统,功能与特色深... 你有没有听说最近安卓PE10系统火得一塌糊涂?没错,就是那个让无数手机用户为之疯狂的系统。今天,我就...
安卓系统程序安装目录,安卓系统... 你有没有想过,当你手机里安装了一个又一个应用程序时,它们都藏在哪里呢?没错,就是那个神秘的安卓系统程...
ios系统能定位安卓系统吗,i... 你有没有想过,你的iPhone和安卓手机之间竟然能玩出这么一出“追踪大戏”?没错,我要说的就是那个让...
安卓系统时间放到桌面,桌面概览... 你有没有发现,手机上的时间有时候会偷偷跑得飞快,让你不知不觉就错过了重要的事情?别急,今天就来教你怎...
安卓系统怎么刷win,体验全新... 你有没有想过,把你的安卓手机变成一台Windows电脑呢?听起来是不是有点不可思议?但别急,今天我就...
安卓仿苹果系统设置,打造极致用... 你有没有发现,现在越来越多的安卓手机开始模仿苹果的操作系统了?没错,就是那个简洁又好用的设置界面!今...
emui 安卓系统对应关系,E... 你有没有发现,每次打开你的华为手机,那个界面看起来是不是特别顺眼?那是因为华为的EMUI系统,它就像...
永诺安卓系统相机,功能解析与使... 你有没有发现,手机拍照已经成为我们生活中不可或缺的一部分?而在这其中,永诺安卓系统的相机功能可是相当...
tinder安卓版系统错误,揭... 最近在使用Tinder安卓版的时候,你是不是也遇到了一些让人头疼的系统错误呢?别急,今天就来和你聊聊...