数据结构之算法的时间复杂度和空间复杂度
创始人
2024-05-27 05:31:16
0

本章重点:

1.算法效率
2.时间复杂度
3.空间复杂度
4. 常见时间复杂度以及复杂度oj练习

目录

1.算法效率

1.2算法的复杂度

2.时间复杂度 

2.1  时间复杂度的概念

2.2 大O的渐进表示法

2.3常见时间复杂度计算举例

3.空间复杂度 

 4. 常见复杂度对比

5.复杂度的oj练习 

5.1消失的数字 

5.2旋转数组



1.算法效率


1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
 

long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢


1.2算法的复杂度

 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算
机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计
算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度 

2.1  时间复杂度的概念

 可以将算法的时间复杂度看成是一个函数,类似于一个函数式子 F(N) = NN^{2} + 2*N + 10,算法中的基本操作的执行次数,为算法的时间复杂度。即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
 

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}

这个函数执行的基本操作次数:可以用函数式子N^{2} + 2*N + 10

来表示当N 变化时候 

N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010

对应的函数结果是不同的 那怎么衡量他的时间复杂度呢?实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

2.2 大O的渐进表示法

 大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(^{N^{2}})

N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例
 

实例1:

 

// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

最差情况下 运行 2N + 10 大O渐进法 去掉影响因素较小的 以及系数,所以时间复杂度为O(N)

 实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}

这个程序中并没有介绍M 和N 的大小 所以时间复杂度为O(M + N).

实例3:
 

// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}

所有常数的时间复杂度都可以优化到O(1)。

实例4:
 

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

寻找字符串函数 最差情况就是O(N)

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

 最好的情况下:是顺序的 只需要两两比较,只需要O(N),如果不是有序的 需要每个比较 那就是O(N方)

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}

二分查找,前提是有序 就像折纸一样,最悲观的情况 1 * 2 *2 *2 .......x = N 总共运行了x次

根据指数公式 x = \log 2^{^{N}}

 实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;

不为零 就要运行一次 一直运行到N = 0; 一共N + 1次 去掉没用的那就是O(N)

实例8:
 

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}

2^{0} + 2^{1} +2^{2} + 2^{3} +.......2^{N} 悲观计算法 时间复杂度 就是O(N) 

 

3.空间复杂度 

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用额外存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定
实例1:
 

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

额外变量只有一个 所以空间复杂度是O(1)

实例2:
 

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}

额外申请了n+ 1 个空间 所以空间复杂度为O(N)

实例3:
 

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
 

 4. 常见复杂度对比

 

 

5.复杂度的oj练习 

5.1消失的数字 

#include
//  利用异或的知识点,交换律不改变最终结果,所以 定义一个变量 初始值为0,与数组异或后,在与给定数组异或,剩下的值就是我们要找的
int missingNumber(int* nums, int numsSize)
{int x = 0;for (int i = 0; i <= numsSize; i++)// 不缺失,所以正常数组大小比给定数组大小大1{x ^= i;}for (int i = 0; i < numsSize; i++){x ^= *(nums + i);}return x;
}
int main()
{int nums[100] = { 0 };int num = sizeof(nums) / sizeof(nums[0]);for (int i = 0; i < num; i++){scanf("%d", nums[i]);}printf("%d", missingNumber(nums, num));return 0;
}

5.2旋转数组

// 先封装一个转置函数
void reverse(int* pa, int left, int right)
{while (left < right){int temp = 0;temp = *(pa + left);*(pa + left) = *(pa + right);*(pa + right) = temp;++left;--right;}
}void rotate(int* nums, int numsSize, int k)
{if (k >= numsSize){k %= numsSize;}// 将前 numsSize - k - 1 个数 转置reverse(nums, 0, numsSize - k - 1);// 将后 k 个数 转置reverse(nums, numsSize - k, numsSize - 1);// 将整体转置 个数 转置reverse(nums, 0, numsSize - 1);}

 

 

相关内容

热门资讯

iOSapp移植到安卓系统,i... 你有没有想过,那些在iOS上让你爱不释手的app,是不是也能在安卓系统上大放异彩呢?今天,就让我带你...
现在安卓随便换系统,探索个性化... 你知道吗?现在安卓手机换系统简直就像换衣服一样简单!没错,就是那种随时随地、随心所欲的感觉。今天,就...
安卓系统安装按钮灰色,探究原因... 最近发现了一个让人头疼的小问题,那就是安卓手机的安装按钮突然变成了灰色,这可真是让人摸不着头脑。你知...
安卓7.1.1操作系统,系统特... 你知道吗?最近我在手机上发现了一个超级酷的新玩意儿——安卓7.1.1操作系统!这可不是什么小打小闹的...
安卓os系统怎么设置,并使用`... 你有没有发现,你的安卓手机有时候就像一个不听话的小孩子,有时候设置起来真是让人头疼呢?别急,今天就来...
安卓降低系统版本5.1,探索安... 你知道吗?最近安卓系统又来了一次大动作,竟然把系统版本给降到了5.1!这可真是让人有点摸不着头脑,不...
解放安卓系统被保护,解放安卓系... 你有没有想过,你的安卓手机其实可以更加自由地呼吸呢?是的,你没听错,我说的就是解放安卓系统被保护的束...
校务帮安卓系统下载,便捷校园生... 你有没有想过,你的手机里装了一个神奇的助手——校务帮安卓系统下载?没错,就是那个能让你轻松管理学校事...
安卓系统没有拼多多,拼多多崛起... 你知道吗?最近我在手机上发现了一个小小的秘密,那就是安卓系统里竟然没有拼多多这个应用!这可真是让我大...
甜城麻将安卓系统,解锁全新麻将... 你有没有听说过那个超级火的甜城麻将安卓系统?没错,就是那个让无数麻将爱好者为之疯狂的软件!今天,就让...
安卓系统卸载的软件,深度揭秘卸... 手机里的软件越来越多,是不是感觉内存不够用了?别急,今天就来教你怎么在安卓系统里卸载那些不再需要的软...
安卓系统推荐好游戏,畅享指尖乐... 手机里的游戏可是咱们休闲娱乐的好伙伴,尤其是安卓系统的用户,选择面那可是相当广呢!今天,就让我来给你...
王者安卓系统怎么卖,揭秘如何轻... 你有没有听说最近王者安卓系统的火爆程度?没错,就是那个让无数玩家沉迷其中的王者荣耀!今天,我就来给你...
安卓开发系统内置证书,基于安卓... 你有没有想过,你的安卓手机里那些神秘的内置证书,它们到底是个啥玩意儿?别急,今天就来给你揭秘这些隐藏...
荣耀安装安卓原生系统,深度体验... 你知道吗?最近荣耀手机界可是掀起了一股热潮,那就是——荣耀安装安卓原生系统!这可不是什么小打小闹,而...
安卓13小米系统,创新功能与流... 你知道吗?最近安卓13系统可谓是风头无两,各大手机厂商纷纷推出自家的新版系统,其中小米的安卓13系统...
鸿蒙系统底层安卓10,融合与创... 你知道吗?最近手机圈里可是热闹非凡呢!华为的新操作系统鸿蒙系统,竟然在底层采用了安卓10的架构。这可...
安卓系统辅助在哪关闭,轻松关闭... 你有没有发现,安卓系统的辅助功能真是贴心到不行啊!不过,有时候这些功能太多,用起来有点乱糟糟的。别急...
安卓系统outlook邮件设置... 你有没有发现,自从你把手机升级到了安卓系统,邮件管理变得有点复杂呢?别急,今天就来手把手教你如何设置...
安卓系统停止向华为,自主操作系... 你知道吗?最近科技圈可是炸开了锅!安卓系统突然宣布停止向华为提供技术支持,这可不仅仅是两家公司之间的...