CEC2020:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解CEC2020(提供MATLAB代码
创始人
2024-05-28 13:10:46
0

一、鱼鹰优化算法简介

鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。
在这里插入图片描述

鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米,体重1000-1750克。头部白色,头顶具有黑褐色的纵纹,枕部的羽毛稍微呈披针形延长,形成一个短的羽冠。头的侧面有一条宽阔的黑带,从前额的基部经过眼睛到后颈部,并与后颈的黑色融为一体。上体为暗褐色,略微具有紫色的光泽。下体为白色,胸部的暗色纵纹和飞羽,以及尾羽上相间排列的横斑均极为醒目。虹膜淡黄色或橙黄色,眼周裸露皮肤铅黄绿色,嘴黑色,蜡膜铅蓝色,脚和趾黄色,爪黑色。

鱼鹰栖息于湖泊、河流、海岸或开阔地,尤其喜欢在山地森林中的河谷或有树木的水域地带活动。常见在江河、湖沼及海滨一带飞翔,一见水中有饵,就直下水面,用脚掠之而去。趾具锐爪,趾底遍生细刺,外趾复能由前向后反转,这些都很适于捕鱼。在天气晴朗之日,盘旋于水面上空,定点后俯冲而下,再将捕获的鱼带至岩石、电杆、树上等地方享用。巢常营于海岸或岛屿的岩礁上。主要以鱼为食,有时也捕食蛙、蜥蜴、小型鸟类等其他小型陆栖动物。除了南极和北极,亚洲、北美洲等各大洲均有分布。

1.1鱼鹰优化算法原理

鱼鹰优化算法包含两个阶段:第一阶段为鱼鹰识别鱼的位置并捕鱼(全局勘探), 第二阶段为将鱼带到合适的位置( 局部开采),其详细设计如下:

1.1.1 种群初始化

采用下式随机初始化鱼鹰种群:
X=[X1⋮Xi⋮XN]N×m=[x1,1⋯x1,j⋯x1,m⋮⋱⋮⋱⋮xi,1⋯xi,j⋯xi,m⋮⋱⋮⋱⋮xN,1⋯xN,j⋯xN,m]N×m,xi,j=lbj+ri,j⋅(ubj−lbj),i=1,2,…,N,j=1,2,…,m,\begin{array}{c} X=\left[\begin{array}{c} X_{1} \\ \vdots \\ X_{i} \\ \vdots \\ X_{N} \end{array}\right]_{N \times m}=\left[\begin{array}{ccccc} x_{1,1} & \cdots & x_{1, j} & \cdots & x_{1, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i, 1} & \cdots & x_{i, j} & \cdots & x_{i, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{N, 1} & \cdots & x_{N, j} & \cdots & x_{N, m} \end{array}\right]_{N \times m}, \\ x_{i, j}=l b_{j}+r_{i, j} \cdot\left(u b_{j}-l b_{j}\right), i=1,2, \ldots, N, j=1,2, \ldots, m, \end{array}X=​X1​⋮Xi​⋮XN​​​N×m​=​x1,1​⋮xi,1​⋮xN,1​​⋯⋱⋯⋱⋯​x1,j​⋮xi,j​⋮xN,j​​⋯⋱⋯⋱⋯​x1,m​⋮xi,m​⋮xN,m​​​N×m​,xi,j​=lbj​+ri,j​⋅(ubj​−lbj​),i=1,2,…,N,j=1,2,…,m,​
其中,N为鱼鹰的数量,m为问题的维度,初始化位置后依据优化问题计算适应度值:
F=[F1⋮Fi⋮FN]N×1=[F(X1)⋮F(Xi)⋮F(XN)]N×1F=\left[\begin{array}{c} F_{1} \\ \vdots \\ F_{i} \\ \vdots \\ F_{N} \end{array}\right]_{N \times 1}=\left[\begin{array}{c} F\left(X_{1}\right) \\ \vdots \\ F\left(X_{i}\right) \\ \vdots \\ F\left(X_{N}\right) \end{array}\right]_{N \times 1}F=​F1​⋮Fi​⋮FN​​​N×1​=​F(X1​)⋮F(Xi​)⋮F(XN​)​​N×1​

1.1.2 全局勘探(第一阶段:位置识别和捕鱼)

鱼鹰是强大的猎人,由于其强大的视力,能够探测到水下鱼类的位置。在确定鱼的位置后,他们攻击它并通过潜入水下捕猎鱼。OOA中种群更新的第一阶段是基于对鱼鹰这种自然行为的模拟而建模的。对鱼鹰攻击鱼类进行建模会导致鱼鹰在搜索空间中的位置发生显著变化,这增加了OOA在识别最优区域和逃离局部最优方面的探索能力。在OOA设计中,对于每只鱼鹰,搜索空间中具有较好目标函数值的其他鱼鹰的位置被视为水下鱼类。每只鱼鹰的位置使用下式指定。
FPi={Xk∣k∈{1,2,…,N}∧FkXk​∣k∈{1,2,…,N}∧Fk​Xbest ​}
其中,FPiF P _ { i }FPi​为第i只鱼鹰的位置集合,Xbest {X}_{\text {best }}Xbest ​为最佳鱼鹰的位置。
鱼鹰随机检测其中一条鱼的位置并攻击它。基于鱼鹰向鱼的运动模拟,使用下式计算相应鱼鹰的新位置。这个新位置,如果它的目标函数的值更好,则替换鱼鹰的先前位置。
xi,jP1=xi,j+ri,j⋅(SFi,j−Ii,j⋅xi,j),xi,jP1={xi,jP1,lbj≤xi,jP1≤ubj;lbj,xi,jP1ubj.Xi={XiP1,FiP1u b_{j} . \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 1}, F_{i}^{P 1}⎧​xi,jP1​,lbj​,ubj​,​lbj​≤xi,jP1​≤ubj​;xi,jP1​ubj​.​Xi​={XiP1​,FiP1​ 其中,xi,jP1x_{i, j}^{P 1}xi,jP1​为第i只鱼鹰在第一阶段时,其第j维的新位置,Fi,jP1F_{i, j}^{P 1}Fi,jP1​是其对应的适应度值。SFi,jS F_{i, j}SFi,j​为[0,1]之间的随机数,Ii,jI_{i, j}Ii,j​为集合{1,2}中的随机数。

1.1.3 局部开采(第二阶段:将鱼带到合适的位置)

捕食鱼后,鱼鹰将其带到合适(对他来说安全)的位置,并在那里吃。OOA中更新种群的第二阶段是基于鱼鹰这种自然行为的模拟建模的。将鱼带到合适位置的建模导致鱼鹰在搜索空间中的位置发生微小变化,从而导致 OOA 在本地搜索中的开发能力增加,并在发现的解决方案附近收敛到更好的解决方案。在OOA的设计中,为了模拟鱼鹰的这种自然行为,首先,针对种群的每个成员,使用下式计算一个新的随机位置作为“适合吃鱼的位置”。然后,如果目标函数的值在这个新位置得到改善,则替换相应鱼鹰的先前位置。
xi,jP2=xi,j+lbj+r⋅(ubj−lbj)t,i=1,2,…,N,j=1,2,…,m,t=1,2,…,T,xi,jP2={xi,jP2,lbj≤xi,jP2≤ubj;lbj,xi,jP2ubj,Xi={XiP2,FiP2u b_{j}, \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 2}, F_{i}^{P 2}⎧​xi,jP2​,lbj​≤xi,jP2​≤ubj​;lbj​,xi,jP2​ubj​,​Xi​={XiP2​,FiP2​ 其中,xi,jP2x_{i, j}^{P 2}xi,jP2​为第i只鱼鹰在第二阶段时,其第j维的新位置,Fi,jP2F_{i, j}^{P 2}Fi,jP2​是其对应的适应度值。rrr为[0,1]之间的随机数,ttt和TTT分别为当前迭代次数和最大迭代次数。

1.2算法描述

在这里插入图片描述

1.3算法流程

在这里插入图片描述

1.4参考文献

Dehghani Mohammad, Trojovský Pavel.Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J].Frontiers in Mechanical Engineering,2023,8.

二、CEC2020简介

CEC2020共有10个测试函数测试维度包含:2D、5D、10D、15D、20D。CEC2020测试问题随着维度的增加求解极其困难。

在这里插入图片描述

三、求解结果

完整代码添加博客下方博主微信:djpcNLP123
将鱼鹰优化算法OOA运用于求解CEC2020中10个函数,其中每个测试函数可以选择的维度分别有:2D、5D、10D、15D、20D。增大迭代次数,鱼鹰优化算法OOA的求解效果更佳。本例测试函数维度均为10D(可根据自己需求调整),种群大小为50,最大迭代次数为100次。

close all
clear
clc
MaxFes = 50;%迭代次数
VarNumber = 10;%维度 2/5/10/15/20
nPop = 50;%种群大小
VarMin=-100;%下限
VarMax=100;%上限
fitnessfunc=str2func('cec20_func');
Function_name=1;%测试函数1-10
[Best_Fit,Best_Pos,Curve]=OOA(nPop,MaxFes,VarMin,VarMax,VarNumber,CostFunction);  
figure
plot(Curve,'g','linewidth',2.5)
xlabel('迭代次数')
ylabel('适应度值')
legend('OOA')
title(strcat('CEC2020-F',num2str(Function_name)))

部分求解结果:

F1:

在这里插入图片描述

F2:

在这里插入图片描述

F3:

在这里插入图片描述

F4:

在这里插入图片描述

F5:

在这里插入图片描述

四、参考代码

完整代码添加博客下方博主微信:djpcNLP123

相关内容

热门资讯

安卓系统和oppo系统哪个流畅... 你有没有想过,手机系统哪个更流畅呢?安卓系统和OPPO系统,这两个名字听起来就让人心动。今天,咱们就...
安卓怎么用微软系统,利用微软系... 你是不是也和我一样,对安卓手机上的微软系统充满了好奇?想象那熟悉的Windows界面在你的安卓手机上...
安卓系统如何安装nfc,安卓系... 你有没有想过,用手机刷公交卡、支付账单,是不是比掏出钱包来得酷炫多了?这就得归功于NFC技术啦!今天...
ios系统可以转安卓,跨平台应... 你有没有想过,你的iPhone手机里的那些宝贝应用,能不能搬到安卓手机上继续使用呢?没错,今天就要来...
iOSapp移植到安卓系统,i... 你有没有想过,那些在iOS上让你爱不释手的app,是不是也能在安卓系统上大放异彩呢?今天,就让我带你...
现在安卓随便换系统,探索个性化... 你知道吗?现在安卓手机换系统简直就像换衣服一样简单!没错,就是那种随时随地、随心所欲的感觉。今天,就...
安卓系统安装按钮灰色,探究原因... 最近发现了一个让人头疼的小问题,那就是安卓手机的安装按钮突然变成了灰色,这可真是让人摸不着头脑。你知...
安卓7.1.1操作系统,系统特... 你知道吗?最近我在手机上发现了一个超级酷的新玩意儿——安卓7.1.1操作系统!这可不是什么小打小闹的...
安卓os系统怎么设置,并使用`... 你有没有发现,你的安卓手机有时候就像一个不听话的小孩子,有时候设置起来真是让人头疼呢?别急,今天就来...
安卓降低系统版本5.1,探索安... 你知道吗?最近安卓系统又来了一次大动作,竟然把系统版本给降到了5.1!这可真是让人有点摸不着头脑,不...
解放安卓系统被保护,解放安卓系... 你有没有想过,你的安卓手机其实可以更加自由地呼吸呢?是的,你没听错,我说的就是解放安卓系统被保护的束...
校务帮安卓系统下载,便捷校园生... 你有没有想过,你的手机里装了一个神奇的助手——校务帮安卓系统下载?没错,就是那个能让你轻松管理学校事...
安卓系统没有拼多多,拼多多崛起... 你知道吗?最近我在手机上发现了一个小小的秘密,那就是安卓系统里竟然没有拼多多这个应用!这可真是让我大...
甜城麻将安卓系统,解锁全新麻将... 你有没有听说过那个超级火的甜城麻将安卓系统?没错,就是那个让无数麻将爱好者为之疯狂的软件!今天,就让...
安卓系统卸载的软件,深度揭秘卸... 手机里的软件越来越多,是不是感觉内存不够用了?别急,今天就来教你怎么在安卓系统里卸载那些不再需要的软...
安卓系统推荐好游戏,畅享指尖乐... 手机里的游戏可是咱们休闲娱乐的好伙伴,尤其是安卓系统的用户,选择面那可是相当广呢!今天,就让我来给你...
王者安卓系统怎么卖,揭秘如何轻... 你有没有听说最近王者安卓系统的火爆程度?没错,就是那个让无数玩家沉迷其中的王者荣耀!今天,我就来给你...
安卓开发系统内置证书,基于安卓... 你有没有想过,你的安卓手机里那些神秘的内置证书,它们到底是个啥玩意儿?别急,今天就来给你揭秘这些隐藏...
荣耀安装安卓原生系统,深度体验... 你知道吗?最近荣耀手机界可是掀起了一股热潮,那就是——荣耀安装安卓原生系统!这可不是什么小打小闹,而...
安卓13小米系统,创新功能与流... 你知道吗?最近安卓13系统可谓是风头无两,各大手机厂商纷纷推出自家的新版系统,其中小米的安卓13系统...