AVL 树实现
创始人
2024-05-28 14:30:21
0

AVL 树的概念

也许因为插入的值不够随机,也许因为经过某些插入或删除操作,二叉搜索树可能会失去平衡,甚至可能退化为单链表,造成搜索效率低。

二叉树不平衡

AVL Tree 是一个「加上了额外平衡条件」的二叉搜索树,其平衡条件的建立是为了确保整棵树的深度为 O(log2N)O(log_2N)O(log2​N)。

AVL Tree 要求任何节点的左右子树高度相差最多为 1。当违反该规定时,就需要进行旋转来保证该规定。

AVL 树的实现

节点的定义

AVL 树节点的定义比一般的二叉搜索树复杂,它需要额外一个 parent 指针,方便后续旋转。并在每个节点中引入平衡因子,便于判断是否需要旋转。

/// @brief AVL 树节点结构
/// @tparam K 节点的 key 值
/// @tparam V 节点的 value 值
template 
struct AVLTreeNode {AVLTreeNode(const pair& kv) : _kv(kv), _parent(nullptr), _left(nullptr), _right(nullptr), _bf(0){}pair _kv;AVLTreeNode* _parent;AVLTreeNode* _left;AVLTreeNode* _right;// 左右子树高度相同平衡因子为:0// 左子树高平衡因子为负// 右子树高平衡因子为正int _bf;
};

接口总览

template
class AVLTree {typedef AVLTreeNode Node;
public:Node* Find(const K& key);bool Insert(const pair& kv);private:void RotateR(Node* parent);void RotateL(Node* parent);void RotateLR(Node* parent);void RotateRL(Node* parent);
private:Node* _root = nullptr;
};

查找

AVL 树的查找和普通的搜索二叉树一样:

  • 若 key 值大于当前节点的值,在当前节点的右子树中查找
  • 若 key 值小于当前节点的值,在当前节点的左子树中查找
  • 若 key 值等于当前节点的值,返回当前节点的地址
  • 若找到空,查找失败,返回空指针
/// @brief 查找指定 key 值
/// @param key 要查找的 key
/// @return 找到返回节点的指针,没找到返回空指针
Node* Find(const K& key) {Node* cur = _root;while (cur != nullptr) {// key 值与当前节点值比较if (key > cur->_kv.first) {cur = cur->_right;} else if (key < cur->_kv.first) {cur = cur->_left;} else {return cur;}}return nullptr;
}

插入

AVL 的插入整体分为两步:

  1. 按照二叉搜索树的方式将节点插入
  2. 调整节点的平衡因子

平衡因子是怎么调整的?

设新插入的节点为 pCur,新插入节点的父节点为 pParent。在插入之前,pParent 的平衡因子有三种可能:0、-1、1。

插入分为两种:

  • pCur 插入到 pParent 的左侧,将 pParent 的平衡因子减 1
  • pCur 插入到 pParent 的右侧,将 pParent 的平衡因子加 1

此时,pParent 的平衡因子可能有三种情况:0、正负 1、正负 2。

  1. 0:说明插入之前是正负 1,插入后被调整为 0,满足 AVL 性质插入成功
  2. 正负 1:说明插入之前是 0,插入后被调整为正负 1,此时 pParent 变高,需要继续向上更新
  3. 正负 2:说明插入之前是正负 1,插入后被调整为正负 2,此时破坏了规定,需要旋转处理
/// @brief 插入指定节点
/// @param kv 待插入的节点
/// @return 插入成功返回 true,失败返回 false
bool Insert(const pair& kv) {if (_root == nullptr) {_root = new Node(kv);return true;}// 先找到要插入的位置Node* parent = nullptr;Node* cur = _root;while (cur != nullptr) {if (kv.first > cur->_kv.first) {parent = cur;cur = cur->_right;} else if (kv.first < cur->_kv.first) {parent = cur;cur = cur->_left;} else {// 已经存在,插入失败return false;}}// 将节点插入cur = new Node(kv);if (kv.first > parent->_kv.first) {parent->_right = cur;cur->_parent = parent;} else {parent->_left = cur;cur->_parent = parent;}// 更新平衡因子,直到正常while (parent != nullptr) {// 调整父亲的平衡因子if (parent->_left == cur) {--parent->_bf;} else {++parent->_bf;}if (parent->_bf == 0) {// 此时不需要再继续调整了,直接退出break;} else if (parent->_bf == 1 || parent->_bf == -1) {// 此时需要继续向上调整cur = parent;parent = parent->_parent;} else if (parent->_bf == 2 || parent->_bf == -2) {// 此时需要旋转处理if (parent->_bf == -2 && cur->_bf == -1) {RotateR(parent);} else if (parent->_bf == 2 && cur->_bf == 1) {RotateL(parent);} else if (parent->_bf == -2 && cur->_bf == 1) {RotateLR(parent);} else if (parent->_bf == 2 && cur->_bf == -1) {RotateRL(parent);} else {assert(false);}// 旋转完了就平衡了,直接退出break;} else {// 此时说明之前就处理错了assert(false);} // end of if (parent->_bf == 0)} // end of while (parent != nullptr)return true;
}

旋转

假设平衡因子为正负 2 的节点为 X,由于节点最多拥有两个子节点,因此可以分为四种情况:

  1. 插入点位于 X 的左子节点的左子树——左左:右单旋
  2. 插入点位于 X 的左子节点的右子树——左右:左右双旋
  3. 插入点位于 X 的右子节点的右子树——右右:左单旋
  4. 插入点位于 X 的右子节点的左子树——右左:右左双旋

AVL 破坏

右单旋

单旋

假设平衡因子为正负 2 的节点为 parent,parent 的父节点为 pParent,parent 的左子树为 subL,subL 的右子树为 subLR。

右单旋的操作流程:

  1. 让 subLR 作为 parent 的左子树
  2. 让 parent 作为 subL 的右子树
  3. 让 subL 作为整个子树的新根
  4. 更新平衡因子
/// @brief 进行右单旋
/// @param parent 平衡因子为正负 2 的节点
void RotateR(Node* parent) {Node* pParent = parent->_parent;Node* subL = parent->_left;Node* subLR = parent->_left->_right;// 更改链接关系// 1. subLR 作为 parent 的左子树parent->_left = subLR;if (subLR != nullptr) {subLR->_parent = parent;}// 2. parent 作为 subL 的右子树subL->_right = parent;parent->_parent = subL;// 3. subL 作为整个子树的新根if (parent == _root) {// parent 为 _root,此时令 subL 为 _root_root = subL;subL->_parent = nullptr;} else {// parent 不为 _root,pParent 也就不为空if (parent == pParent->_left) {pParent->_left = subL;} else {pParent->_right = subL;}subL->_parent = pParent;}// 4. 更新平衡因子// 观察上图明显可知subL->_bf = 0;parent->_bf = 0;
}

左单旋

左单旋与右单旋类似,只是方向不同。

假设平衡因子为正负 2 的节点为 parent,parent 的父节点为 pParent,parent 的右子树为 subR,subR 的左子树为 subRL。

左单旋的操作流程:

  1. 让 subRL 作为 parent 的右子树
  2. 让 parent 作为 subR 的左子树
  3. 让 subR 作为整个子树的新根
  4. 更新平衡因子
/// @brief 进行左单旋
/// @param parent 平衡因子为正负 2 的节点
void RotateL(Node* parent) {Node* pParetn = parent->_parent;Node* subR = parent->_right;Node* subRL = parent->_right->_left;// 更改链接关系// 1. subRL 作为 parent 的右子树parent->_right = subRL;if (subRL != nullptr) {subRL->_parent = parent;}// 2. parent 作为 subR 的左子树subR->_left = parent;parent->_parent = subR;// 3. subR 作为整个子树的新根if (parent == _root) {_root = subR;subR->_parent = nullptr;} else {if (parent == pParetn->_left) {pParetn->_left = subR;} else {pParetn->_right = subR;}subR->_parent = pParetn;}// 4. 更新平衡因子subR->_bf = 0;parent->_bf = 0;
}

左右双旋

双旋1

假设平衡因子为正负 2 的节点为 parent,parent 的左子树为 subL,subL 的右子树为 subLR。

左右双旋就是对 subL 进行一次左单旋,对 parent 进行一次右单旋。双旋也就完成了,要注意的是双旋后平衡因子的更新。

此时分三种情况:

  1. 新插入的节点是 subLR 的右子树

双旋更新1

  1. 新插入的节点是 subLR 的左子树

双旋更新2

  1. 新插入的是 subLR

双旋更新3

结合上述情况,写出如下代码:

/// @brief 进行左右双旋
/// @param parent 平衡因子为正负 2 的节点
void RotateLR(Node* parent) {Node* subL = parent->_left;Node* subLR = parent->_left->_right;int bf = subLR->_bf;RotateL(subL);RotateR(parent);if (bf == 1) {// 新插入节点是 subLR 的右子树parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;} else if (bf == -1) {// 新插入的节点是 subLR 的左子树parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;} else if (bf == 0) {// 新插入的节点是 subLRparent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;} else {assert(false);}
}

右左双旋

假设平衡因子为正负 2 的节点为 parent,parent 的右子树为 subR,subR 的左子树为 subRL。

右左双旋就是对 subR 进行一次右单旋,对 parent 进行一次左单旋。流程和左右双旋一样,这里就不过多介绍了。

void RotateRL(Node* parent) {Node* subR = parent->_right;Node* subRL = parent->_right->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 1) {// 新插入节点是 subRL 的右子树parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;} else if (bf == -1) {// 新插入的节点是 subRL 的左子树parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;} else if (bf == 0) {// 新插入的节点是 subRLparent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;} else {assert(false);}
}

相关内容

热门资讯

安卓系统和oppo系统哪个流畅... 你有没有想过,手机系统哪个更流畅呢?安卓系统和OPPO系统,这两个名字听起来就让人心动。今天,咱们就...
安卓怎么用微软系统,利用微软系... 你是不是也和我一样,对安卓手机上的微软系统充满了好奇?想象那熟悉的Windows界面在你的安卓手机上...
安卓系统如何安装nfc,安卓系... 你有没有想过,用手机刷公交卡、支付账单,是不是比掏出钱包来得酷炫多了?这就得归功于NFC技术啦!今天...
ios系统可以转安卓,跨平台应... 你有没有想过,你的iPhone手机里的那些宝贝应用,能不能搬到安卓手机上继续使用呢?没错,今天就要来...
iOSapp移植到安卓系统,i... 你有没有想过,那些在iOS上让你爱不释手的app,是不是也能在安卓系统上大放异彩呢?今天,就让我带你...
现在安卓随便换系统,探索个性化... 你知道吗?现在安卓手机换系统简直就像换衣服一样简单!没错,就是那种随时随地、随心所欲的感觉。今天,就...
安卓系统安装按钮灰色,探究原因... 最近发现了一个让人头疼的小问题,那就是安卓手机的安装按钮突然变成了灰色,这可真是让人摸不着头脑。你知...
安卓7.1.1操作系统,系统特... 你知道吗?最近我在手机上发现了一个超级酷的新玩意儿——安卓7.1.1操作系统!这可不是什么小打小闹的...
安卓os系统怎么设置,并使用`... 你有没有发现,你的安卓手机有时候就像一个不听话的小孩子,有时候设置起来真是让人头疼呢?别急,今天就来...
安卓降低系统版本5.1,探索安... 你知道吗?最近安卓系统又来了一次大动作,竟然把系统版本给降到了5.1!这可真是让人有点摸不着头脑,不...
解放安卓系统被保护,解放安卓系... 你有没有想过,你的安卓手机其实可以更加自由地呼吸呢?是的,你没听错,我说的就是解放安卓系统被保护的束...
校务帮安卓系统下载,便捷校园生... 你有没有想过,你的手机里装了一个神奇的助手——校务帮安卓系统下载?没错,就是那个能让你轻松管理学校事...
安卓系统没有拼多多,拼多多崛起... 你知道吗?最近我在手机上发现了一个小小的秘密,那就是安卓系统里竟然没有拼多多这个应用!这可真是让我大...
甜城麻将安卓系统,解锁全新麻将... 你有没有听说过那个超级火的甜城麻将安卓系统?没错,就是那个让无数麻将爱好者为之疯狂的软件!今天,就让...
安卓系统卸载的软件,深度揭秘卸... 手机里的软件越来越多,是不是感觉内存不够用了?别急,今天就来教你怎么在安卓系统里卸载那些不再需要的软...
安卓系统推荐好游戏,畅享指尖乐... 手机里的游戏可是咱们休闲娱乐的好伙伴,尤其是安卓系统的用户,选择面那可是相当广呢!今天,就让我来给你...
王者安卓系统怎么卖,揭秘如何轻... 你有没有听说最近王者安卓系统的火爆程度?没错,就是那个让无数玩家沉迷其中的王者荣耀!今天,我就来给你...
安卓开发系统内置证书,基于安卓... 你有没有想过,你的安卓手机里那些神秘的内置证书,它们到底是个啥玩意儿?别急,今天就来给你揭秘这些隐藏...
荣耀安装安卓原生系统,深度体验... 你知道吗?最近荣耀手机界可是掀起了一股热潮,那就是——荣耀安装安卓原生系统!这可不是什么小打小闹,而...
安卓13小米系统,创新功能与流... 你知道吗?最近安卓13系统可谓是风头无两,各大手机厂商纷纷推出自家的新版系统,其中小米的安卓13系统...