AVL 树实现
创始人
2024-05-28 14:30:21
0

AVL 树的概念

也许因为插入的值不够随机,也许因为经过某些插入或删除操作,二叉搜索树可能会失去平衡,甚至可能退化为单链表,造成搜索效率低。

二叉树不平衡

AVL Tree 是一个「加上了额外平衡条件」的二叉搜索树,其平衡条件的建立是为了确保整棵树的深度为 O(log2N)O(log_2N)O(log2​N)。

AVL Tree 要求任何节点的左右子树高度相差最多为 1。当违反该规定时,就需要进行旋转来保证该规定。

AVL 树的实现

节点的定义

AVL 树节点的定义比一般的二叉搜索树复杂,它需要额外一个 parent 指针,方便后续旋转。并在每个节点中引入平衡因子,便于判断是否需要旋转。

/// @brief AVL 树节点结构
/// @tparam K 节点的 key 值
/// @tparam V 节点的 value 值
template 
struct AVLTreeNode {AVLTreeNode(const pair& kv) : _kv(kv), _parent(nullptr), _left(nullptr), _right(nullptr), _bf(0){}pair _kv;AVLTreeNode* _parent;AVLTreeNode* _left;AVLTreeNode* _right;// 左右子树高度相同平衡因子为:0// 左子树高平衡因子为负// 右子树高平衡因子为正int _bf;
};

接口总览

template
class AVLTree {typedef AVLTreeNode Node;
public:Node* Find(const K& key);bool Insert(const pair& kv);private:void RotateR(Node* parent);void RotateL(Node* parent);void RotateLR(Node* parent);void RotateRL(Node* parent);
private:Node* _root = nullptr;
};

查找

AVL 树的查找和普通的搜索二叉树一样:

  • 若 key 值大于当前节点的值,在当前节点的右子树中查找
  • 若 key 值小于当前节点的值,在当前节点的左子树中查找
  • 若 key 值等于当前节点的值,返回当前节点的地址
  • 若找到空,查找失败,返回空指针
/// @brief 查找指定 key 值
/// @param key 要查找的 key
/// @return 找到返回节点的指针,没找到返回空指针
Node* Find(const K& key) {Node* cur = _root;while (cur != nullptr) {// key 值与当前节点值比较if (key > cur->_kv.first) {cur = cur->_right;} else if (key < cur->_kv.first) {cur = cur->_left;} else {return cur;}}return nullptr;
}

插入

AVL 的插入整体分为两步:

  1. 按照二叉搜索树的方式将节点插入
  2. 调整节点的平衡因子

平衡因子是怎么调整的?

设新插入的节点为 pCur,新插入节点的父节点为 pParent。在插入之前,pParent 的平衡因子有三种可能:0、-1、1。

插入分为两种:

  • pCur 插入到 pParent 的左侧,将 pParent 的平衡因子减 1
  • pCur 插入到 pParent 的右侧,将 pParent 的平衡因子加 1

此时,pParent 的平衡因子可能有三种情况:0、正负 1、正负 2。

  1. 0:说明插入之前是正负 1,插入后被调整为 0,满足 AVL 性质插入成功
  2. 正负 1:说明插入之前是 0,插入后被调整为正负 1,此时 pParent 变高,需要继续向上更新
  3. 正负 2:说明插入之前是正负 1,插入后被调整为正负 2,此时破坏了规定,需要旋转处理
/// @brief 插入指定节点
/// @param kv 待插入的节点
/// @return 插入成功返回 true,失败返回 false
bool Insert(const pair& kv) {if (_root == nullptr) {_root = new Node(kv);return true;}// 先找到要插入的位置Node* parent = nullptr;Node* cur = _root;while (cur != nullptr) {if (kv.first > cur->_kv.first) {parent = cur;cur = cur->_right;} else if (kv.first < cur->_kv.first) {parent = cur;cur = cur->_left;} else {// 已经存在,插入失败return false;}}// 将节点插入cur = new Node(kv);if (kv.first > parent->_kv.first) {parent->_right = cur;cur->_parent = parent;} else {parent->_left = cur;cur->_parent = parent;}// 更新平衡因子,直到正常while (parent != nullptr) {// 调整父亲的平衡因子if (parent->_left == cur) {--parent->_bf;} else {++parent->_bf;}if (parent->_bf == 0) {// 此时不需要再继续调整了,直接退出break;} else if (parent->_bf == 1 || parent->_bf == -1) {// 此时需要继续向上调整cur = parent;parent = parent->_parent;} else if (parent->_bf == 2 || parent->_bf == -2) {// 此时需要旋转处理if (parent->_bf == -2 && cur->_bf == -1) {RotateR(parent);} else if (parent->_bf == 2 && cur->_bf == 1) {RotateL(parent);} else if (parent->_bf == -2 && cur->_bf == 1) {RotateLR(parent);} else if (parent->_bf == 2 && cur->_bf == -1) {RotateRL(parent);} else {assert(false);}// 旋转完了就平衡了,直接退出break;} else {// 此时说明之前就处理错了assert(false);} // end of if (parent->_bf == 0)} // end of while (parent != nullptr)return true;
}

旋转

假设平衡因子为正负 2 的节点为 X,由于节点最多拥有两个子节点,因此可以分为四种情况:

  1. 插入点位于 X 的左子节点的左子树——左左:右单旋
  2. 插入点位于 X 的左子节点的右子树——左右:左右双旋
  3. 插入点位于 X 的右子节点的右子树——右右:左单旋
  4. 插入点位于 X 的右子节点的左子树——右左:右左双旋

AVL 破坏

右单旋

单旋

假设平衡因子为正负 2 的节点为 parent,parent 的父节点为 pParent,parent 的左子树为 subL,subL 的右子树为 subLR。

右单旋的操作流程:

  1. 让 subLR 作为 parent 的左子树
  2. 让 parent 作为 subL 的右子树
  3. 让 subL 作为整个子树的新根
  4. 更新平衡因子
/// @brief 进行右单旋
/// @param parent 平衡因子为正负 2 的节点
void RotateR(Node* parent) {Node* pParent = parent->_parent;Node* subL = parent->_left;Node* subLR = parent->_left->_right;// 更改链接关系// 1. subLR 作为 parent 的左子树parent->_left = subLR;if (subLR != nullptr) {subLR->_parent = parent;}// 2. parent 作为 subL 的右子树subL->_right = parent;parent->_parent = subL;// 3. subL 作为整个子树的新根if (parent == _root) {// parent 为 _root,此时令 subL 为 _root_root = subL;subL->_parent = nullptr;} else {// parent 不为 _root,pParent 也就不为空if (parent == pParent->_left) {pParent->_left = subL;} else {pParent->_right = subL;}subL->_parent = pParent;}// 4. 更新平衡因子// 观察上图明显可知subL->_bf = 0;parent->_bf = 0;
}

左单旋

左单旋与右单旋类似,只是方向不同。

假设平衡因子为正负 2 的节点为 parent,parent 的父节点为 pParent,parent 的右子树为 subR,subR 的左子树为 subRL。

左单旋的操作流程:

  1. 让 subRL 作为 parent 的右子树
  2. 让 parent 作为 subR 的左子树
  3. 让 subR 作为整个子树的新根
  4. 更新平衡因子
/// @brief 进行左单旋
/// @param parent 平衡因子为正负 2 的节点
void RotateL(Node* parent) {Node* pParetn = parent->_parent;Node* subR = parent->_right;Node* subRL = parent->_right->_left;// 更改链接关系// 1. subRL 作为 parent 的右子树parent->_right = subRL;if (subRL != nullptr) {subRL->_parent = parent;}// 2. parent 作为 subR 的左子树subR->_left = parent;parent->_parent = subR;// 3. subR 作为整个子树的新根if (parent == _root) {_root = subR;subR->_parent = nullptr;} else {if (parent == pParetn->_left) {pParetn->_left = subR;} else {pParetn->_right = subR;}subR->_parent = pParetn;}// 4. 更新平衡因子subR->_bf = 0;parent->_bf = 0;
}

左右双旋

双旋1

假设平衡因子为正负 2 的节点为 parent,parent 的左子树为 subL,subL 的右子树为 subLR。

左右双旋就是对 subL 进行一次左单旋,对 parent 进行一次右单旋。双旋也就完成了,要注意的是双旋后平衡因子的更新。

此时分三种情况:

  1. 新插入的节点是 subLR 的右子树

双旋更新1

  1. 新插入的节点是 subLR 的左子树

双旋更新2

  1. 新插入的是 subLR

双旋更新3

结合上述情况,写出如下代码:

/// @brief 进行左右双旋
/// @param parent 平衡因子为正负 2 的节点
void RotateLR(Node* parent) {Node* subL = parent->_left;Node* subLR = parent->_left->_right;int bf = subLR->_bf;RotateL(subL);RotateR(parent);if (bf == 1) {// 新插入节点是 subLR 的右子树parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;} else if (bf == -1) {// 新插入的节点是 subLR 的左子树parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;} else if (bf == 0) {// 新插入的节点是 subLRparent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;} else {assert(false);}
}

右左双旋

假设平衡因子为正负 2 的节点为 parent,parent 的右子树为 subR,subR 的左子树为 subRL。

右左双旋就是对 subR 进行一次右单旋,对 parent 进行一次左单旋。流程和左右双旋一样,这里就不过多介绍了。

void RotateRL(Node* parent) {Node* subR = parent->_right;Node* subRL = parent->_right->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 1) {// 新插入节点是 subRL 的右子树parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;} else if (bf == -1) {// 新插入的节点是 subRL 的左子树parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;} else if (bf == 0) {// 新插入的节点是 subRLparent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;} else {assert(false);}
}

相关内容

热门资讯

安卓9系统怎样应用分身,轻松实... 你有没有发现,手机里的APP越来越多,有时候一个APP里还要处理好多任务,分身功能简直就是救星啊!今...
获取安卓系统的ip地址,轻松获... 你有没有想过,你的安卓手机里隐藏着一个神秘的IP地址?没错,就是那个能让你在网络世界里找到自己的小秘...
LG彩电安卓系统升级,畅享智能... 你家的LG彩电是不是最近有点儿“闹别扭”,屏幕上时不时地跳出个升级提示?别急,今天就来给你详细说说这...
阴阳师安卓苹果系统,安卓与苹果... 亲爱的玩家们,你是否曾在深夜里,手握手机,沉浸在阴阳师的神秘世界?今天,就让我带你一起探索这款风靡全...
华为安卓系统区别在哪,独特创新... 你知道吗?最近手机圈里可是热闹非凡,尤其是华为的新动作,让很多人眼睛都瞪大了。没错,我说的就是华为自...
怎么重新刷安卓手机系统,深度解... 手机用久了,是不是感觉卡顿得厉害?别急,今天就来教你怎么重新刷安卓手机系统,让你的手机焕然一新,速度...
刷正版安卓系统教程,刷正版安卓... 你有没有想过,让你的安卓手机焕然一新,体验一把正版系统的魅力呢?别急,今天就来手把手教你如何刷正版安...
移动支撑系统安卓版,助力移动办... 你有没有发现,现在的生活越来越离不开手机了?无论是工作还是娱乐,手机几乎成了我们生活的必需品。而今天...
安卓怎么进win系统界面,安卓... 亲爱的安卓用户,你是否曾幻想过在安卓设备上直接体验Windows系统的魅力?别再羡慕那些Window...
incall可以升级安卓系统吗... 你有没有想过,你的手机是不是也能像电脑一样,时不时地来个系统升级呢?今天,咱们就来聊聊这个话题——i...
安卓系统带农历软件,尽享传统节... 你知道吗?现在智能手机上有个特别实用的功能,那就是农历显示。对于咱们中国人来说,农历可是有着深厚的历...
安卓系统资源占用高,揭秘原因与... 你有没有发现,你的安卓手机最近变得越来越慢了?是不是觉得打开一个应用都要等半天,甚至有时候还会卡死?...
安卓10的系统有哪些,功能升级... 你有没有发现,你的安卓手机最近是不是变得有点不一样了?没错,就是那个神秘的安卓10系统!它就像一位魔...
固态硬盘系统迁移到安卓,固态硬... 你有没有想过,把你的固态硬盘系统迁移到安卓设备上,是不是能让你在移动办公或者娱乐时更加得心应手呢?想...
平板电脑能玩安卓系统吗,畅享丰... 你有没有想过,平板电脑竟然也能玩安卓系统?这可不是天方夜谭,而是科技发展的新趋势。想象你手中的平板瞬...
安卓刷精简系统下载,轻松打造高... 你有没有想过,你的安卓手机是不是有点儿“臃肿”了呢?运行速度慢,电池续航短,有时候还卡得要命。别急,...
安卓子系统windows11,... 你知道吗?最近科技圈可是炸开了锅,因为安卓子系统在Windows 11上的兼容性成了大家热议的话题。...
电脑里怎么下载安卓系统,电脑端... 你有没有想过,你的电脑里也能装上安卓系统呢?没错,就是那个让你手机不离手的安卓!今天,就让我来带你一...
索尼相机魔改安卓系统,魔改系统... 你知道吗?最近在摄影圈里掀起了一股热潮,那就是索尼相机魔改安卓系统。这可不是一般的改装,而是让这些专...
安卓系统哪家的最流畅,安卓系统... 你有没有想过,为什么你的手机有时候像蜗牛一样慢吞吞的,而别人的手机却能像风一样快?这背后,其实就是安...