26- AlexNet和VGG模型分析 (TensorFlow系列) (深度学习)
创始人
2024-05-28 16:15:32
0

知识要点

  • AlexNet 是2012年ISLVRC 2012竞赛的冠军网络。

  • VGG 在2014年由牛津大学著名研究组 VGG 提出。

  • 10 monkey数据集是10个种类的猴子分类.


AlexNet

1.1 Alexnet简介

AlexNet 是2012年ISLVRC 2012(ImageNet Large Scale Visual Recognition  Challenge)竞赛的冠军网络,分类准确率由传统的 70%+提升到 80%+。 它是由Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,深度学习开始迅速发展。

  • ISLVRC 2012竞赛

    • 训练集:1,281,167张已标注图片

    • 验证集:50,000张已标注图片

    • 测试集:100,000张未标注图片

该网络的亮点在于:

  1. 首次利用 GPU 进行网络加速训练。
  2. 使用了 ReLU 激活函数,而不是传统的 Sigmoid 激活函数以及 Tanh 激活函数。
  3. 使用了 LRN 局部响应归一化。
  4. 在全连接层的前两层中使用了 Dropout 随机失活神经元操作,以减少过拟合。

过拟合:根本原因是特征维度过多,模型假设过于复杂,参数 过多,训练数据过少,噪声过多,导致拟合的函数完美的预测 训练集,但对新数据的测试集预测结果差。 过度的拟合了训练 数据,而没有考虑到泛化能力。

使用 Dropout 的方式在网络正向传播过程中随机失活一部分神经元。

经卷积后的矩阵尺寸大小计算公式为:N = (W − F + 2P ) / S + 1

  1. 输入图片大小 W×W

  2. Filter大小 F×F

  3. 步长 S

  4. padding的像素数 P

1.2 模型网络内部

1.2.1 conv1层

Conv1:  kernels:48*2=96  kernel_size:11  padding:[1, 2]  stride:4

  • input_size:  [224, 224, 3]

  • output_size: [55, 55, 96]

N = (W − F + 2P ) / S + 1   = [224-11+(1+2)]/4+1 = 55

1.2.2 Maxpool1层

Conv1:  kernels:48*2=96  kernel_size:11  padding: [1, 2]  stride:4  output_size:  [55, 55, 96]

Maxpool1:  kernel_size:3  pading: 0  stride:2

  • input_size:  [55, 55, 96]

  • output_size: [27, 27, 96]

  • N = (W − F + 2P ) / S + 1    =(55-3)/2+1 = 27

1.2.3 Conv2层

Conv1:  kernels:48*2=96  kernel_size:11  padding: [1, 2]  stride:4  output_size:  [55, 55, 96]

Maxpool1:  kernel_size:3  pading: 0  stride:2    output_size:  [27, 27, 96]

Conv2:  kernels:128*2=256  kernel_size:5  padding: [2, 2]  stride:1

  • input_size:  [27, 27, 96]

  • output_size: [27, 27, 256]

N = (W − F + 2P ) / S + 1  =(27-5+4)/1+1 = 27

1.2.4 Maxpool2层

Conv2: kernels:128*2=256  kernel_size:5  padding: [2, 2]  stride:1  output_size: [27, 27, 256]

Maxpool2:  kernel_size:3  pading: 0  stride:2

  • input_size:  [27, 27, 256]

  • output_size: [13, 13, 256]

N = (W − F + 2P ) / S + 1 = (27-3)/2+1 = 13

1.2.5 Conv3层

Maxpool2:  kernel_size:3  pading: 0  stride:2    output_size: [13, 13, 256]

Conv3:  kernels:192*2=384  kernel_size:3  padding: [1, 1]  stride:1

  • input_size:  [13, 13, 256]

  • output_size: [13, 13, 384]

N = (W − F + 2P ) / S + 1 =(13-3+2)/1+1  = 13

1.2.6 Conv4层

Conv3:  kernels:192*2=384  kernel_size:3  padding: [1, 1]  stride:1  output_size:  [13, 13, 384]

Conv4:  kernels:192*2=384  kernel_size:3  padding: [1, 1]  stride:1

  • input_size:   [13, 13, 384]

  • output_size: [13, 13, 384]

N = (W − F + 2P ) / S + 1 = (13-3+2)/1+1

1.2.7 Conv5层

Conv4:  kernels:192*2=384  kernel_size:3  padding: [1, 1]  stride:1  output_size:  [13, 13, 256]

Conv5:  kernels:128*2=256  kernel_size:3  padding: [1, 1]  stride:1

  • input_size:   [13, 13, 384]

  • output_size: [13, 13, 256]

N = (W − F + 2P ) / S + 1 = (13-3+2)/1+1

1.2.8 Maxpool3层

Conv5:  kernels:128*2=256  kernel_size:3  padding: [1, 1]  stride:1   output_size:  [13, 13, 256]

Maxpool3:   kernel_size:3  padding:0  stride:2

  • input_size:   [13, 13, 256]

  • output_size: [6, 6, 256]

N = (W − F + 2P ) / S + 1 = (13-3)/2+1 = 6

1.3 图像内部尺寸变换

layer_name

kernel_size

kernel_num

padding

stride

Conv1

11

96

[1, 2]

4

Maxpool1

3

None

0

2

Conv2

5

256

[2, 2]

1

Maxpool2

3

None

0

2

Conv3

3

384

[1, 1]

1

Conv4

3

384

[1, 1]

1

Conv5

3

256

[1, 1]

1

Maxpool3

3

None

0

2

FC1

2048

None

None

None

FC2

2048

None

None

None

FC3

1000

None

None

None

1.4 代码实现

1.4.1 导包

from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltcpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())

1.4.2 函数式建模

# 函数式写法
def AlexNet(im_height=224, im_width=224, num_classes=1000):# 输入层input_image = keras.layers.Input(shape =(im_height, im_width, 3), dtype = tf.float32)# 手动实现padding, 周边补零填充x = keras.layers.ZeroPadding2D(((1, 2), (1, 2)))(input_image)# 卷积x = keras.layers.Conv2D(48, kernel_size = 11, strides = 4, activation = 'relu')(x)# 池化x = keras.layers.MaxPool2D(pool_size = 3, strides = 2)(x)# 第二层卷积x = keras.layers.Conv2D(128, kernel_size = 5, padding = 'same', activation = 'relu')(x)# 池化x = keras.layers.MaxPool2D(pool_size = 3, strides = 2)(x)# 卷积x = keras.layers.Conv2D(192, kernel_size = 3, padding = 'same', activation = 'relu')(x)x = keras.layers.Conv2D(192, kernel_size = 3, padding = 'same', activation = 'relu')(x)x = keras.layers.Conv2D(128, kernel_size = 3, padding = 'same', activation = 'relu')(x)# 池化 pool_sizex = keras.layers.MaxPool2D(pool_size = 3, strides = 2)(x)# 传链接x = keras.layers.Flatten()(x)# 加dropoutx = keras.layers.Dropout(0.2)(x)x = keras.layers.Dense(2048, activation = 'relu')(x)x = keras.layers.Dropout(0.2)(x)x = keras.layers.Dense(2048, activation = 'relu')(x)# 输出层x = keras.layers.Dense(num_classes)(x)# 预测predict = keras.layers.Softmax()(x)model = keras.models.Model(inputs = input_image, outputs = predict)return modelmodel = AlexNet(im_height= 224, im_width= 224, num_classes= 10)
model.summary()

1.4.3 数据处理

# 用10mokeys 进行使用举例
train_dir = './training/training/'
valid_dir = './validation/validation/'
# 数据整理  # 图片数据生成器
train_datagen = keras.preprocessing.image.ImageDataGenerator(rescale = 1.0/ 255,rotation_range= 40, width_shift_range= 0.2,height_shift_range= 0.2,shear_range = 0.2, zoom_range = 0.2,horizontal_flip = True,vertical_flip= True,fill_mode= 'nearest')height = 224
width = 224
channels = 3
batch_size = 32
num_classes = 10
train_generator = train_datagen.flow_from_directory(train_dir, target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode = 'categorical')valid_dategen = keras.preprocessing.image.ImageDataGenerator(rescale = 1. / 255)
valid_generator = valid_dategen.flow_from_directory(valid_dir, target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode = 'categorical')print(train_generator.samples)   # 1098
print(valid_generator.samples)   # 272

1.4.4 模型训练

model.compile(optimizer = 'adam',   # optimizer 优化器, 防止过拟合 loss = 'categorical_crossentropy',metrics = ['accuracy'])histroy = model.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data= valid_generator,validation_steps= valid_generator.samples // batch_size)

VGG

2.1 简介

VGG在2014年由牛津大学著名研究组VGG (Visual Geometry  Group) 提出,斩获该年ImageNet竞  中 Localization Task (定位 任务) 第一名 和 Classification Task (分类任务) 第二名。

网络中的亮点:通过堆叠多个 3x3的卷积核 来替代大尺度卷积核(减少所需参数)

论文中提到,可以通过堆叠两个3x3积核替代5x5的卷积核堆叠三个3x3的卷积核替代7x7的卷积核

2.2 基本概念拓展CNN感受

在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)。通俗的解释是,输出feature map上的一个单元对应输入层上的区域大小

论文中提到,可以通过堆叠两个3x3的卷积核替代5x5的卷积核

堆叠三个3x3的卷积核替代7x7的卷积核

使用7x7卷积核所需参数,与堆叠三个3x3卷积核所需参数(假设输入输出channel为C)

7 * 7* C * C = 49C^2

3*3* C *C +3* 3*C *C+ 3* 3* C *C =27C^ 2

  • conv的stride为1,padding为1
  • maxpool的size为2,stride为2

2.3 代码实现

2.3.1 导包

from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltcpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())

2.3.2 创建模型

# 函数式写法
cfgs = {'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']}  # M:池化
def make_feature(cfg):feature_layers = []for v in cfg:if v == 'M':feature_layers.append(keras.layers.MaxPool2D(pool_size = 2, strides = 2))else:feature_layers.append(keras.layers.Conv2D(v, kernel_size = 3,padding = 'SAME',activation = 'relu'))return keras.Sequential(feature_layers, name = 'feature')  # 整体当做一层
# 定义网络结构
def VGG(feature, im_height = 224, im_width = 224, num_classes = 1000):input_image = keras.layers.Input(shape = (im_height, im_width, 3), dtype = 'float32')x = feature(input_image)x = keras.layers.Flatten()(x)  # 将flatten当做一个函数# dropout, 防止过拟合, 每次放弃部分参数x = keras.layers.Dropout(rate = 0.5)(x)# 原论文为4096x = keras.layers.Dense(512, activation = 'relu')(x)x = keras.layers.Dropout(rate = 0.5)(x)x = keras.layers.Dense(512, activation = 'relu')(x)x = keras.layers.Dense(num_classes)(x)output = keras.layers.Softmax()(x)model = keras.models.Model(inputs = input_image, outputs = output)return model
# 定义网络模型
def vgg(model_name = 'vgg16', im_height = 224, im_width = 224, num_classes = 1000):cfg = cfgs[model_name]model = VGG(make_feature(cfg), im_height = im_height, im_width= im_width, num_classes= num_classes)return model
vgg16 = vgg(num_classes = 10)

 

2.3.3 数据导入

# 用10mokeys 进行使用举例
train_dir = './training/training/'
valid_dir = './validation/validation/'# 数据整理
# 图片数据生成器
train_datagen = keras.preprocessing.image.ImageDataGenerator(rescale = 1.0/ 255,rotation_range= 40, width_shift_range= 0.2,height_shift_range= 0.2,shear_range = 0.2, zoom_range = 0.2,horizontal_flip = True,vertical_flip= True,fill_mode= 'nearest')height = 224
width = 224
channels = 3
batch_size = 32
num_classes = 10
train_generator = train_datagen.flow_from_directory(train_dir, target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode = 'categorical')valid_dategen = keras.preprocessing.image.ImageDataGenerator(rescale = 1. / 255)
valid_generator = valid_dategen.flow_from_directory(valid_dir, target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode = 'categorical')print(train_generator.samples)
print(valid_generator.samples)

2.3.4 模型训练

vgg16.compile(optimizer = 'adam',   # optimizer 优化器, 防止过拟合 loss = 'categorical_crossentropy',metrics = ['accuracy'])histroy = vgg16.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data= valid_generator,validation_steps= valid_generator.samples // batch_size)

相关内容

热门资讯

苹果系统安卓爱思助手,系统兼容... 你有没有发现,手机的世界里,苹果系统和安卓系统就像是一对欢喜冤家,总是各有各的粉丝,各有各的拥趸。而...
安卓系统占用很大内存,揭秘内存... 手机里的安卓系统是不是让你感觉内存不够用,就像你的房间堆满了杂物,总是找不到地方放新东西?别急,今天...
安卓系统p30,安卓系统下的摄... 你有没有发现,最近安卓系统P30在手机圈里可是火得一塌糊涂呢!这不,我就来给你好好扒一扒这款手机的那...
siri被安卓系统进入了,智能... 你知道吗?最近科技圈可是炸开了锅,因为一个大家伙——Siri,竟然悄悄地溜进了安卓系统!这可不是什么...
最强挂机系统和安卓区别,揭秘安... 亲爱的读者,你是否曾在游戏中遇到过这样的困扰:一边想要享受游戏带来的乐趣,一边又不想放弃手中的零食或...
安卓系统为什么设系统盘,保障稳... 你有没有想过,为什么安卓系统里会有一个叫做“系统盘”的东西呢?这可不是随便设置的,背后可是有大学问的...
王者怎么加安卓系统的,轻松提升... 你有没有想过,你的手机里那款超酷的王者荣耀,怎么才能让它更好地在你的安卓系统上运行呢?别急,今天就来...
安卓手机系统怎么开热点,共享网... 你有没有想过,当你身处一个没有Wi-Fi信号的地方,而你的安卓手机里却存满了精彩视频和游戏时,是不是...
安卓系统11的平板电脑,性能升... 你有没有发现,最近平板电脑市场又热闹起来了?没错,安卓系统11的新一代平板电脑正在悄悄地走进我们的生...
安卓手机系统创始人,安卓手机系... 你有没有想过,那些陪伴我们每天生活的安卓手机,它们的灵魂是谁赋予的呢?没错,就是那位神秘而又传奇的安...
安卓11系统速度提升,体验再升... 你知道吗?最近安卓系统又升级啦!这次可是直接跳到了安卓11,听说速度提升了不少呢!是不是很心动?那就...
安卓5.1原生系统设置apk,... 你有没有想过,你的安卓手机里那些看似普通的设置,其实隐藏着不少小秘密呢?今天,就让我带你一探究竟,揭...
手机安卓系统玩音游,畅享指尖音... 你有没有发现,现在手机上的游戏种类越来越丰富,尤其是音游,简直让人爱不释手!今天,就让我来给你详细介...
安卓系统与win10,系统融合... 你有没有想过,为什么你的手机里装的是安卓系统,而电脑上却是Windows 10呢?这两种操作系统,就...
苹果系统王者安卓系统可以登吗,... 你有没有想过,为什么苹果系统的手机那么受欢迎,而安卓系统的手机却也能在市场上占有一席之地呢?今天,咱...
安卓系统怎么重制系统还原,安卓... 手机用久了是不是感觉卡得要命,想给它来个大变身?别急,今天就来教你怎么给安卓手机重置系统,让它焕然一...
安卓9系统怎样应用分身,轻松实... 你有没有发现,手机里的APP越来越多,有时候一个APP里还要处理好多任务,分身功能简直就是救星啊!今...
获取安卓系统的ip地址,轻松获... 你有没有想过,你的安卓手机里隐藏着一个神秘的IP地址?没错,就是那个能让你在网络世界里找到自己的小秘...
LG彩电安卓系统升级,畅享智能... 你家的LG彩电是不是最近有点儿“闹别扭”,屏幕上时不时地跳出个升级提示?别急,今天就来给你详细说说这...
阴阳师安卓苹果系统,安卓与苹果... 亲爱的玩家们,你是否曾在深夜里,手握手机,沉浸在阴阳师的神秘世界?今天,就让我带你一起探索这款风靡全...