这款 Python 工具进行数据分析及数据可视化真的很棒啊
创始人
2024-05-28 17:55:31
0

前言

大家好,今天我们以全国各地区衣食住行消费数据为例,来分析2022年中国统计年鉴数据,统计全国各地人民的消费地图,看看:

哪个省份的人最能花钱
哪个省份的人最舍得花钱
哪个省份的人最抠门
全国各地区人民在吃、穿、住、行方面的消费习惯

希望对小伙伴们有所帮助,如有疑问或者需要改进的地方可以在评论区留言。

本文涉及到的库:
Pandas — 数据处理
Pyecharts — 数据可视化

可视化部分:
柱状图 — Bar
地图 — Map
组合图 — Grid

技术提升

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

本文来自技术群粉丝的分享、推荐,资料、代码、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自 CSDN + 可视化
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

1. 导入模块

import pandas as pd
from pyecharts.charts import Bar
from pyecharts.charts import Map
from pyecharts.charts import Grid
from pyecharts import options as opts
from pyecharts.globals import SymbolType
from pyecharts.commons.utils import JsCode

2.Pandas数据处理

2.1 读取数据

df = pd.read_csv('/home/mw/input/202302048885/居民人均消费支出.txt',sep=' ')
df
地区	人均可支配收入	消费支出	食品烟酒	衣着	居住	生活用品及服务	交通通信	教育文化娱乐	医疗保健	其他用品及服务	Unnamed: 11
0	全国	32188.8	21209.9	6397.3	1238.4	5215.3	1259.5	2761.8	2032.2	1843.1	462.2	NaN
1	北京	69433.5	38903.3	8373.9	1803.5	15710.5	2145.8	3789.5	2766.0	3513.3	800.7	NaN
2	天津	43854.1	28461.4	8516.0	1711.8	7035.3	1669.4	3778.7	2253.7	2646.0	850.5	NaN
3	河北	27135.9	18037.0	4992.5	1249.7	4394.5	1171.2	2356.9	1799.1	1692.0	381.2	NaN
4	山西	25213.7	15732.7	4362.4	1235.8	3460.4	863.9	1980.9	1608.4	1854.0	366.9	NaN
5	内蒙古	31497.3	19794.5	5686.1	1568.3	4148.6	1119.2	3099.2	1835.9	1891.5	445.8	NaN
6	辽宁	32738.3	20672.1	6110.1	1378.2	4473.8	1091.8	2660.0	1950.8	2303.2	704.1	NaN
7	吉林	25751.0	17317.7	5021.6	1293.9	3448.2	906.7	2386.0	1742.0	2031.2	488.1	NaN
8	黑龙江	24902.0	17056.4	5287.2	1300.6	3450.7	895.4	2122.2	1602.9	2023.2	374.4	NaN
9	上海	72232.4	42536.3	11224.7	1694.0	15247.3	2091.2	4557.5	3662.9	3033.4	1025.3	NaN
10	江苏	43390.4	26225.1	7258.4	1450.5	7505.9	1523.0	3588.8	2298.2	2018.6	581.8	NaN
11	浙江	52397.4	31294.7	8922.1	1703.2	9009.1	1789.3	4301.2	2889.4	1955.9	724.4	NaN
12	安徽	28103.2	18877.3	6280.4	1210.4	4375.9	1108.4	2172.1	1855.3	1548.0	326.8	NaN
13	福建	37202.4	25125.8	8385.1	1182.4	7304.8	1274.8	2972.0	1895.9	1583.2	527.5	NaN
14	江西	28016.5	17955.3	5780.6	987.2	4454.9	966.5	2146.4	1879.0	1437.3	303.3	NaN
15	山东	32885.7	20940.1	5757.3	1438.0	4437.0	1571.0	3004.1	2373.7	1914.0	444.8	NaN
16	河南	24810.1	16142.6	4417.9	1221.8	3807.6	1077.6	1917.2	1685.4	1621.9	393.2	NaN
17	湖北	27880.6	19245.9	5897.7	1173.0	4659.6	1088.9	2559.5	1755.9	1764.9	346.4	NaN
18	湖南	29379.9	20997.6	6251.7	1236.9	4436.2	1289.0	2745.5	2587.3	2034.7	416.3	NaN
19	广东	41028.6	28491.9	9629.3	1044.5	7733.0	1560.6	3808.7	2442.9	1677.9	595.1	NaN
20	广西	24562.3	16356.8	5591.5	595.0	3579.0	929.1	2107.9	1766.2	1540.7	247.3	NaN
21	海南	27904.1	18971.6	7514.0	660.6	4168.0	890.0	2118.9	1880.5	1407.3	332.3	NaN
22	重庆	30823.9	21678.1	7284.6	1459.1	4062.1	1517.4	2630.9	2120.9	2101.5	501.6	NaN
23	四川	26522.1	19783.4	7026.4	1190.4	3855.7	1234.8	2465.1	1650.5	1908.0	452.4	NaN
24	贵州	21795.4	14873.8	4606.9	944.6	2998.2	901.1	2218.0	1636.7	1269.6	298.7	NaN
25	云南	23294.9	16792.4	5092.1	868.3	3469.8	958.5	2709.4	1835.8	1547.4	311.0	NaN
26	西藏	21744.1	13224.8	4786.6	1137.2	2970.5	838.6	1987.5	550.9	589.9	363.6	NaN
27	陕西	26226.0	17417.6	4819.5	1156.6	3857.6	1179.3	2194.0	1756.6	2078.4	375.6	NaN
28	甘肃	20335.1	16174.9	4768.8	1140.6	3557.3	1045.5	2020.4	1728.6	1544.7	369.1	NaN
29	青海	24037.4	18284.2	5224.5	1301.4	3618.5	1073.4	3121.0	1521.3	1975.7	448.5	NaN
30	宁夏	25734.9	17505.8	4816.3	1263.9	3348.8	1037.2	2922.0	1760.6	1906.3	450.7	NaN
31	新疆	23844.7	16512.1	5225.9	1138.9	3304.7	1031.0	2318.9	1488.4	1611.7	392.7	NaN

2.2 数据清理

df1 = df.iloc[1:,:-1]
df1.head()

在这里插入图片描述

2.3 计算各项占比

df1['消费支出占比'] = df1['消费支出']/df1['人均可支配收入']
df1['食品烟酒消费占比'] = df1['食品烟酒']/df1['消费支出']
df1['衣着消费占比'] = df1['衣着']/df1['消费支出']
df1['居住消费占比'] = df1['居住']/df1['消费支出']
df1['生活用品及服务'] = df1['生活用品及服务']/df1['消费支出']
df1['交通通信消费占比'] = df1['交通通信']/df1['消费支出']
df1['教育文化娱乐消费占比'] = df1['教育文化娱乐']/df1['消费支出']
df1['医疗保健消费占比'] = df1['医疗保健']/df1['消费支出']
df1['其他用品及服务消费占比'] = df1['其他用品及服务']/df1['消费支出']
df1['人均净收入'] = df1['人均可支配收入']-df1['消费支出']df1

在这里插入图片描述

3. Pyecharts数据可视化

3.1 全国各地区人均收入、消费支出排行榜

color_function = """function (params) {if (params.value >= 0.66) return '#8E0036';else return '#327B94';}"""df_income = df1.sort_values(by=['人均可支配收入'],ascending=False).round(2)
x_data1 = df_income['地区'].values.tolist()[::-1]
y_data1 = df_income['消费支出'].values.tolist()[::-1]
y_data2 = df_income['人均净收入'].values.tolist()[::-1]
y_data3 = df_income['消费支出占比'].values.tolist()[::-1]
y_data4 = df_income['人均可支配收入'].values.tolist()[::-1]
b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("消费支出", y_data1,category_gap='35%', stack="stack1",label_opts=opts.LabelOpts(position="inside"),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'color':'#203fb6',}},).add_yaxis("人均净收入", y_data2, category_gap='35%', stack="stack1",label_opts=opts.LabelOpts(position="inside", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'color':'#e7298a'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),graphic_opts=[opts.GraphicGroup(graphic_item=opts.GraphicItem(right='39%',bottom='58%',z=10,),children=[opts.GraphicText(graphic_item=opts.GraphicItem(left="center",bottom='center', z=100),graphic_textstyle_opts=opts.GraphicTextStyleOpts(text='''全国人均可支配收入:32188.8全国人均消费支出:21209.9人均消费支出/人均收入:0.66''',font="bold 18px Microsoft YaHei",graphic_basicstyle_opts=opts.GraphicBasicStyleOpts(fill='rgba(255, 171, 65,0.6)'),),),],)],title_opts=opts.TitleOpts(title='1-全国各地区人均收入、消费支出排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="8%",  pos_top="9%",  orient="vertical")).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("消费支出/人均收入", y_data3,category_gap='35%',label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 1,'color':JsCode(color_function)}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),legend_opts=opts.LegendOpts(pos_right="3.8%",  pos_top="12.2%",  orient="vertical")).reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='9%',pos_right='40%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='65%',pos_top='9%',pos_right='20%'))
grid.render_notebook() 

在这里插入图片描述全国人均可支配收入:32188.8,全国人均消费支出:21209.9,人均消费支出/人均可支配收入:0.66
北京、上海、浙江、天津、江苏五个地区的人均可支配收入位居前5,但消费支出占比均低于全国平均水平(0.66),挣得多花的少!
从消费支出占比方面来看,最抠门的几个地区:北京(0.56)、上海(0.59)、浙江(0.6)、江苏(0.6)
从消费支出占比方面来看,最舍得花钱的地区:甘肃(0.8)、青海(0.76)、四川(0.75)、云南(0.72)、湖南(0.71)

3.2 全国各地区人均可支配收入地图

# 省份字典
provs = ['上海', '云南', '内蒙古', '北京', '台湾', '吉林', '四川', '天津', '宁夏', '安徽', '山东', '山西', '广东', '广西','新疆', '江苏', '江西', '河北', '河南', '浙江', '海南', '湖北', '湖南', '澳门', '甘肃', '福建', '西藏', '贵州', '辽宁','重庆', '陕西', '青海', '香港', '黑龙江']
provs_fin = ['上海市', '云南省', '内蒙古自治区', '北京市', '台湾省', '吉林省', '四川省', '天津市', '宁夏回族自治区', '安徽省', '山东省', '山西省', '广东省', '广西壮族自治区','新疆维吾尔自治区', '江苏省', '江西省', '河北省', '河南省', '浙江省', '海南省', '湖北省', '湖南省', '澳门香港特别行政区', '甘肃省', '福建省', '西藏自治区', '贵州省', '辽宁省','重庆市', '陕西省', '青海省', '香港特别行政区', '黑龙江省']
prov_dic = dict(zip(provs,provs_fin))
df_income = df1.sort_values(by=['人均可支配收入'],ascending=False).round(2)
df_income['地区'] = df_income['地区'].replace(prov_dic)
x_data1 = df_income['地区'].values.tolist()[::-1]
y_data1 = df_income['消费支出'].values.tolist()[::-1]
y_data2 = df_income['人均净收入'].values.tolist()[::-1]
y_data3 = df_income['消费支出占比'].values.tolist()[::-1]m1 = (Map(init_opts=opts.InitOpts(theme='dark',width='1000px', height='600px',bg_color='#0d0735')).add('',[list(z) for z in zip(x_data1, y_data1)],maptype='china',is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False,color='red'),itemstyle_opts={'normal': {'shadowColor': 'rgba(0, 0, 0, .5)',  # 阴影颜色'shadowBlur': 5,  # 阴影大小'shadowOffsetY': 0,  # Y轴方向阴影偏移'shadowOffsetX': 0,  # x轴方向阴影偏移'borderColor': '#fff'}}).set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=True,min_ = 10000,max_ = 40000,series_index=0,pos_top='70%',pos_left='10%',range_color=['#9ecae1','#6baed6','#4292c6','#2171b5','#08519c','#08306b','#d4b9da','#c994c7','#df65b0','#e7298a','#ce1256','#980043','#67001f']),tooltip_opts=opts.TooltipOpts(formatter='{b}:{c}'),title_opts=opts.TitleOpts(title='2-全国各地区人均可支配收入地图',subtitle='制图@公众号:Python当打之年',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)))
)
m1.render_notebook()

在这里插入图片描述

3.3 全国各地区消费支出占比地图

m2 = (Map(init_opts=opts.InitOpts(theme='dark',width='1000px', height='600px',bg_color='#0d0735')).add('',[list(z) for z in zip(x_data1, y_data3)],maptype='china',is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False,color='red'),itemstyle_opts={'normal': {'shadowColor': 'rgba(0, 0, 0, .5)',  # 阴影颜色'shadowBlur': 5,  # 阴影大小'shadowOffsetY': 0,  # Y轴方向阴影偏移'shadowOffsetX': 0,  # x轴方向阴影偏移'borderColor': '#fff'}}).set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=True,min_ = 0.49,max_ = 0.8,series_index=0,pos_top='70%',pos_left='10%',range_color=['#9ecae1','#6baed6','#4292c6','#2171b5','#08519c','#08306b','#d4b9da','#c994c7','#df65b0','#e7298a','#ce1256','#980043','#67001f']),tooltip_opts=opts.TooltipOpts(formatter='{b}:{c}'),title_opts=opts.TitleOpts(title='3-全国各地区消费支出占比地图',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)))
)
m2.render_notebook()

在这里插入图片描述

3.4 ‘衣’-全国衣着消费排行榜

df_house = df1.sort_values(by=['衣着消费占比'],ascending=False).round(2)
x_data1 = df_house['地区'].values.tolist()[::-1]
y_data1 = df_house['衣着消费占比'].values.tolist()[::-1]
y_data2 = df_house['衣着'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [2000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='4-全国衣着消费大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.03,max_=0.09,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#862e9c']),).reversal_axis()
)grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 

在这里插入图片描述
最舍得在衣服上花钱的地区是西藏(0.09),最抠门的是海南(0.03),相差足足三倍
就衣着消费占比来看,北方地区消费占比要明显高于南方地区

3.5 ‘食’-全国吃货大省排行榜

df_eat = df1.sort_values(by=['食品烟酒'],ascending=False).round(2)
x_data1 = df_eat['地区'].values.tolist()[::-1]
y_data1 = df_eat['食品烟酒消费占比'].values.tolist()[::-1]
y_data2 = df_eat['食品烟酒'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [12000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='5-全国吃货大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.2,max_=0.4,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#f62336']),).reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 

在这里插入图片描述
全国居民人均食品烟酒消费支出达 6397 元,占全年人均消费支出的近三分之一
食品烟酒支出前十的省市中,上海再次荣登榜首,北方只有北京和天津上榜,但是从占比方面来看北京、上海是垫底的两个地区
山西、河南在食品烟酒上的支出排名最后两位

3.6 ‘住’-全国住房消费排行榜

df_house = df1.sort_values(by=['居住消费占比'],ascending=False).round(2)
x_data1 = df_house['地区'].values.tolist()[::-1]
y_data1 = df_house['居住消费占比'].values.tolist()[::-1]
y_data2 = df_house['居住'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [18000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='6-全国住房消费大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.2,max_=0.4,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#006064']),).reversal_axis()
)
# b1.render_notebook()
grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 

在这里插入图片描述
北京(0.4)、上海(0.36)两地人民在居住上的消费排名前两位,果然房价还是得看北上广,接近40%的消费都在住房上面
重庆、宁夏、四川以0.19的占比排在最后三位,这方面看住房压力还是比较小的

3.7 ‘行’-全国交通消费排行榜

df_house = df1.sort_values(by=['交通通信'],ascending=False).round(2)
x_data1 = df_house['地区'].values.tolist()[::-1]
y_data1 = df_house['交通通信消费占比'].values.tolist()[::-1]
y_data2 = df_house['交通通信'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [5000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='7-全国交通消费大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.1,max_=0.17,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#33691e']),).reversal_axis()
)grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 
  • 上海、浙江、广东、北京、天津等地居民在交通通信上的实际花费排名前五位
  • 青海、宁夏两地以0.17的交通通信消费占比排名前二位,北京、上海在这一项上的占比分别为0.1、0.11

相关内容

热门资讯

苹果系统安卓爱思助手,系统兼容... 你有没有发现,手机的世界里,苹果系统和安卓系统就像是一对欢喜冤家,总是各有各的粉丝,各有各的拥趸。而...
安卓系统占用很大内存,揭秘内存... 手机里的安卓系统是不是让你感觉内存不够用,就像你的房间堆满了杂物,总是找不到地方放新东西?别急,今天...
安卓系统p30,安卓系统下的摄... 你有没有发现,最近安卓系统P30在手机圈里可是火得一塌糊涂呢!这不,我就来给你好好扒一扒这款手机的那...
siri被安卓系统进入了,智能... 你知道吗?最近科技圈可是炸开了锅,因为一个大家伙——Siri,竟然悄悄地溜进了安卓系统!这可不是什么...
最强挂机系统和安卓区别,揭秘安... 亲爱的读者,你是否曾在游戏中遇到过这样的困扰:一边想要享受游戏带来的乐趣,一边又不想放弃手中的零食或...
安卓系统为什么设系统盘,保障稳... 你有没有想过,为什么安卓系统里会有一个叫做“系统盘”的东西呢?这可不是随便设置的,背后可是有大学问的...
王者怎么加安卓系统的,轻松提升... 你有没有想过,你的手机里那款超酷的王者荣耀,怎么才能让它更好地在你的安卓系统上运行呢?别急,今天就来...
安卓手机系统怎么开热点,共享网... 你有没有想过,当你身处一个没有Wi-Fi信号的地方,而你的安卓手机里却存满了精彩视频和游戏时,是不是...
安卓系统11的平板电脑,性能升... 你有没有发现,最近平板电脑市场又热闹起来了?没错,安卓系统11的新一代平板电脑正在悄悄地走进我们的生...
安卓手机系统创始人,安卓手机系... 你有没有想过,那些陪伴我们每天生活的安卓手机,它们的灵魂是谁赋予的呢?没错,就是那位神秘而又传奇的安...
安卓11系统速度提升,体验再升... 你知道吗?最近安卓系统又升级啦!这次可是直接跳到了安卓11,听说速度提升了不少呢!是不是很心动?那就...
安卓5.1原生系统设置apk,... 你有没有想过,你的安卓手机里那些看似普通的设置,其实隐藏着不少小秘密呢?今天,就让我带你一探究竟,揭...
手机安卓系统玩音游,畅享指尖音... 你有没有发现,现在手机上的游戏种类越来越丰富,尤其是音游,简直让人爱不释手!今天,就让我来给你详细介...
安卓系统与win10,系统融合... 你有没有想过,为什么你的手机里装的是安卓系统,而电脑上却是Windows 10呢?这两种操作系统,就...
苹果系统王者安卓系统可以登吗,... 你有没有想过,为什么苹果系统的手机那么受欢迎,而安卓系统的手机却也能在市场上占有一席之地呢?今天,咱...
安卓系统怎么重制系统还原,安卓... 手机用久了是不是感觉卡得要命,想给它来个大变身?别急,今天就来教你怎么给安卓手机重置系统,让它焕然一...
安卓9系统怎样应用分身,轻松实... 你有没有发现,手机里的APP越来越多,有时候一个APP里还要处理好多任务,分身功能简直就是救星啊!今...
获取安卓系统的ip地址,轻松获... 你有没有想过,你的安卓手机里隐藏着一个神秘的IP地址?没错,就是那个能让你在网络世界里找到自己的小秘...
LG彩电安卓系统升级,畅享智能... 你家的LG彩电是不是最近有点儿“闹别扭”,屏幕上时不时地跳出个升级提示?别急,今天就来给你详细说说这...
阴阳师安卓苹果系统,安卓与苹果... 亲爱的玩家们,你是否曾在深夜里,手握手机,沉浸在阴阳师的神秘世界?今天,就让我带你一起探索这款风靡全...