这款 Python 工具进行数据分析及数据可视化真的很棒啊
创始人
2024-05-28 17:55:31
0

前言

大家好,今天我们以全国各地区衣食住行消费数据为例,来分析2022年中国统计年鉴数据,统计全国各地人民的消费地图,看看:

哪个省份的人最能花钱
哪个省份的人最舍得花钱
哪个省份的人最抠门
全国各地区人民在吃、穿、住、行方面的消费习惯

希望对小伙伴们有所帮助,如有疑问或者需要改进的地方可以在评论区留言。

本文涉及到的库:
Pandas — 数据处理
Pyecharts — 数据可视化

可视化部分:
柱状图 — Bar
地图 — Map
组合图 — Grid

技术提升

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

本文来自技术群粉丝的分享、推荐,资料、代码、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自 CSDN + 可视化
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

1. 导入模块

import pandas as pd
from pyecharts.charts import Bar
from pyecharts.charts import Map
from pyecharts.charts import Grid
from pyecharts import options as opts
from pyecharts.globals import SymbolType
from pyecharts.commons.utils import JsCode

2.Pandas数据处理

2.1 读取数据

df = pd.read_csv('/home/mw/input/202302048885/居民人均消费支出.txt',sep=' ')
df
地区	人均可支配收入	消费支出	食品烟酒	衣着	居住	生活用品及服务	交通通信	教育文化娱乐	医疗保健	其他用品及服务	Unnamed: 11
0	全国	32188.8	21209.9	6397.3	1238.4	5215.3	1259.5	2761.8	2032.2	1843.1	462.2	NaN
1	北京	69433.5	38903.3	8373.9	1803.5	15710.5	2145.8	3789.5	2766.0	3513.3	800.7	NaN
2	天津	43854.1	28461.4	8516.0	1711.8	7035.3	1669.4	3778.7	2253.7	2646.0	850.5	NaN
3	河北	27135.9	18037.0	4992.5	1249.7	4394.5	1171.2	2356.9	1799.1	1692.0	381.2	NaN
4	山西	25213.7	15732.7	4362.4	1235.8	3460.4	863.9	1980.9	1608.4	1854.0	366.9	NaN
5	内蒙古	31497.3	19794.5	5686.1	1568.3	4148.6	1119.2	3099.2	1835.9	1891.5	445.8	NaN
6	辽宁	32738.3	20672.1	6110.1	1378.2	4473.8	1091.8	2660.0	1950.8	2303.2	704.1	NaN
7	吉林	25751.0	17317.7	5021.6	1293.9	3448.2	906.7	2386.0	1742.0	2031.2	488.1	NaN
8	黑龙江	24902.0	17056.4	5287.2	1300.6	3450.7	895.4	2122.2	1602.9	2023.2	374.4	NaN
9	上海	72232.4	42536.3	11224.7	1694.0	15247.3	2091.2	4557.5	3662.9	3033.4	1025.3	NaN
10	江苏	43390.4	26225.1	7258.4	1450.5	7505.9	1523.0	3588.8	2298.2	2018.6	581.8	NaN
11	浙江	52397.4	31294.7	8922.1	1703.2	9009.1	1789.3	4301.2	2889.4	1955.9	724.4	NaN
12	安徽	28103.2	18877.3	6280.4	1210.4	4375.9	1108.4	2172.1	1855.3	1548.0	326.8	NaN
13	福建	37202.4	25125.8	8385.1	1182.4	7304.8	1274.8	2972.0	1895.9	1583.2	527.5	NaN
14	江西	28016.5	17955.3	5780.6	987.2	4454.9	966.5	2146.4	1879.0	1437.3	303.3	NaN
15	山东	32885.7	20940.1	5757.3	1438.0	4437.0	1571.0	3004.1	2373.7	1914.0	444.8	NaN
16	河南	24810.1	16142.6	4417.9	1221.8	3807.6	1077.6	1917.2	1685.4	1621.9	393.2	NaN
17	湖北	27880.6	19245.9	5897.7	1173.0	4659.6	1088.9	2559.5	1755.9	1764.9	346.4	NaN
18	湖南	29379.9	20997.6	6251.7	1236.9	4436.2	1289.0	2745.5	2587.3	2034.7	416.3	NaN
19	广东	41028.6	28491.9	9629.3	1044.5	7733.0	1560.6	3808.7	2442.9	1677.9	595.1	NaN
20	广西	24562.3	16356.8	5591.5	595.0	3579.0	929.1	2107.9	1766.2	1540.7	247.3	NaN
21	海南	27904.1	18971.6	7514.0	660.6	4168.0	890.0	2118.9	1880.5	1407.3	332.3	NaN
22	重庆	30823.9	21678.1	7284.6	1459.1	4062.1	1517.4	2630.9	2120.9	2101.5	501.6	NaN
23	四川	26522.1	19783.4	7026.4	1190.4	3855.7	1234.8	2465.1	1650.5	1908.0	452.4	NaN
24	贵州	21795.4	14873.8	4606.9	944.6	2998.2	901.1	2218.0	1636.7	1269.6	298.7	NaN
25	云南	23294.9	16792.4	5092.1	868.3	3469.8	958.5	2709.4	1835.8	1547.4	311.0	NaN
26	西藏	21744.1	13224.8	4786.6	1137.2	2970.5	838.6	1987.5	550.9	589.9	363.6	NaN
27	陕西	26226.0	17417.6	4819.5	1156.6	3857.6	1179.3	2194.0	1756.6	2078.4	375.6	NaN
28	甘肃	20335.1	16174.9	4768.8	1140.6	3557.3	1045.5	2020.4	1728.6	1544.7	369.1	NaN
29	青海	24037.4	18284.2	5224.5	1301.4	3618.5	1073.4	3121.0	1521.3	1975.7	448.5	NaN
30	宁夏	25734.9	17505.8	4816.3	1263.9	3348.8	1037.2	2922.0	1760.6	1906.3	450.7	NaN
31	新疆	23844.7	16512.1	5225.9	1138.9	3304.7	1031.0	2318.9	1488.4	1611.7	392.7	NaN

2.2 数据清理

df1 = df.iloc[1:,:-1]
df1.head()

在这里插入图片描述

2.3 计算各项占比

df1['消费支出占比'] = df1['消费支出']/df1['人均可支配收入']
df1['食品烟酒消费占比'] = df1['食品烟酒']/df1['消费支出']
df1['衣着消费占比'] = df1['衣着']/df1['消费支出']
df1['居住消费占比'] = df1['居住']/df1['消费支出']
df1['生活用品及服务'] = df1['生活用品及服务']/df1['消费支出']
df1['交通通信消费占比'] = df1['交通通信']/df1['消费支出']
df1['教育文化娱乐消费占比'] = df1['教育文化娱乐']/df1['消费支出']
df1['医疗保健消费占比'] = df1['医疗保健']/df1['消费支出']
df1['其他用品及服务消费占比'] = df1['其他用品及服务']/df1['消费支出']
df1['人均净收入'] = df1['人均可支配收入']-df1['消费支出']df1

在这里插入图片描述

3. Pyecharts数据可视化

3.1 全国各地区人均收入、消费支出排行榜

color_function = """function (params) {if (params.value >= 0.66) return '#8E0036';else return '#327B94';}"""df_income = df1.sort_values(by=['人均可支配收入'],ascending=False).round(2)
x_data1 = df_income['地区'].values.tolist()[::-1]
y_data1 = df_income['消费支出'].values.tolist()[::-1]
y_data2 = df_income['人均净收入'].values.tolist()[::-1]
y_data3 = df_income['消费支出占比'].values.tolist()[::-1]
y_data4 = df_income['人均可支配收入'].values.tolist()[::-1]
b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("消费支出", y_data1,category_gap='35%', stack="stack1",label_opts=opts.LabelOpts(position="inside"),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'color':'#203fb6',}},).add_yaxis("人均净收入", y_data2, category_gap='35%', stack="stack1",label_opts=opts.LabelOpts(position="inside", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'color':'#e7298a'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),graphic_opts=[opts.GraphicGroup(graphic_item=opts.GraphicItem(right='39%',bottom='58%',z=10,),children=[opts.GraphicText(graphic_item=opts.GraphicItem(left="center",bottom='center', z=100),graphic_textstyle_opts=opts.GraphicTextStyleOpts(text='''全国人均可支配收入:32188.8全国人均消费支出:21209.9人均消费支出/人均收入:0.66''',font="bold 18px Microsoft YaHei",graphic_basicstyle_opts=opts.GraphicBasicStyleOpts(fill='rgba(255, 171, 65,0.6)'),),),],)],title_opts=opts.TitleOpts(title='1-全国各地区人均收入、消费支出排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="8%",  pos_top="9%",  orient="vertical")).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("消费支出/人均收入", y_data3,category_gap='35%',label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 1,'color':JsCode(color_function)}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),legend_opts=opts.LegendOpts(pos_right="3.8%",  pos_top="12.2%",  orient="vertical")).reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='9%',pos_right='40%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='65%',pos_top='9%',pos_right='20%'))
grid.render_notebook() 

在这里插入图片描述全国人均可支配收入:32188.8,全国人均消费支出:21209.9,人均消费支出/人均可支配收入:0.66
北京、上海、浙江、天津、江苏五个地区的人均可支配收入位居前5,但消费支出占比均低于全国平均水平(0.66),挣得多花的少!
从消费支出占比方面来看,最抠门的几个地区:北京(0.56)、上海(0.59)、浙江(0.6)、江苏(0.6)
从消费支出占比方面来看,最舍得花钱的地区:甘肃(0.8)、青海(0.76)、四川(0.75)、云南(0.72)、湖南(0.71)

3.2 全国各地区人均可支配收入地图

# 省份字典
provs = ['上海', '云南', '内蒙古', '北京', '台湾', '吉林', '四川', '天津', '宁夏', '安徽', '山东', '山西', '广东', '广西','新疆', '江苏', '江西', '河北', '河南', '浙江', '海南', '湖北', '湖南', '澳门', '甘肃', '福建', '西藏', '贵州', '辽宁','重庆', '陕西', '青海', '香港', '黑龙江']
provs_fin = ['上海市', '云南省', '内蒙古自治区', '北京市', '台湾省', '吉林省', '四川省', '天津市', '宁夏回族自治区', '安徽省', '山东省', '山西省', '广东省', '广西壮族自治区','新疆维吾尔自治区', '江苏省', '江西省', '河北省', '河南省', '浙江省', '海南省', '湖北省', '湖南省', '澳门香港特别行政区', '甘肃省', '福建省', '西藏自治区', '贵州省', '辽宁省','重庆市', '陕西省', '青海省', '香港特别行政区', '黑龙江省']
prov_dic = dict(zip(provs,provs_fin))
df_income = df1.sort_values(by=['人均可支配收入'],ascending=False).round(2)
df_income['地区'] = df_income['地区'].replace(prov_dic)
x_data1 = df_income['地区'].values.tolist()[::-1]
y_data1 = df_income['消费支出'].values.tolist()[::-1]
y_data2 = df_income['人均净收入'].values.tolist()[::-1]
y_data3 = df_income['消费支出占比'].values.tolist()[::-1]m1 = (Map(init_opts=opts.InitOpts(theme='dark',width='1000px', height='600px',bg_color='#0d0735')).add('',[list(z) for z in zip(x_data1, y_data1)],maptype='china',is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False,color='red'),itemstyle_opts={'normal': {'shadowColor': 'rgba(0, 0, 0, .5)',  # 阴影颜色'shadowBlur': 5,  # 阴影大小'shadowOffsetY': 0,  # Y轴方向阴影偏移'shadowOffsetX': 0,  # x轴方向阴影偏移'borderColor': '#fff'}}).set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=True,min_ = 10000,max_ = 40000,series_index=0,pos_top='70%',pos_left='10%',range_color=['#9ecae1','#6baed6','#4292c6','#2171b5','#08519c','#08306b','#d4b9da','#c994c7','#df65b0','#e7298a','#ce1256','#980043','#67001f']),tooltip_opts=opts.TooltipOpts(formatter='{b}:{c}'),title_opts=opts.TitleOpts(title='2-全国各地区人均可支配收入地图',subtitle='制图@公众号:Python当打之年',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)))
)
m1.render_notebook()

在这里插入图片描述

3.3 全国各地区消费支出占比地图

m2 = (Map(init_opts=opts.InitOpts(theme='dark',width='1000px', height='600px',bg_color='#0d0735')).add('',[list(z) for z in zip(x_data1, y_data3)],maptype='china',is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False,color='red'),itemstyle_opts={'normal': {'shadowColor': 'rgba(0, 0, 0, .5)',  # 阴影颜色'shadowBlur': 5,  # 阴影大小'shadowOffsetY': 0,  # Y轴方向阴影偏移'shadowOffsetX': 0,  # x轴方向阴影偏移'borderColor': '#fff'}}).set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=True,min_ = 0.49,max_ = 0.8,series_index=0,pos_top='70%',pos_left='10%',range_color=['#9ecae1','#6baed6','#4292c6','#2171b5','#08519c','#08306b','#d4b9da','#c994c7','#df65b0','#e7298a','#ce1256','#980043','#67001f']),tooltip_opts=opts.TooltipOpts(formatter='{b}:{c}'),title_opts=opts.TitleOpts(title='3-全国各地区消费支出占比地图',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)))
)
m2.render_notebook()

在这里插入图片描述

3.4 ‘衣’-全国衣着消费排行榜

df_house = df1.sort_values(by=['衣着消费占比'],ascending=False).round(2)
x_data1 = df_house['地区'].values.tolist()[::-1]
y_data1 = df_house['衣着消费占比'].values.tolist()[::-1]
y_data2 = df_house['衣着'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [2000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='4-全国衣着消费大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.03,max_=0.09,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#862e9c']),).reversal_axis()
)grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 

在这里插入图片描述
最舍得在衣服上花钱的地区是西藏(0.09),最抠门的是海南(0.03),相差足足三倍
就衣着消费占比来看,北方地区消费占比要明显高于南方地区

3.5 ‘食’-全国吃货大省排行榜

df_eat = df1.sort_values(by=['食品烟酒'],ascending=False).round(2)
x_data1 = df_eat['地区'].values.tolist()[::-1]
y_data1 = df_eat['食品烟酒消费占比'].values.tolist()[::-1]
y_data2 = df_eat['食品烟酒'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [12000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='5-全国吃货大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.2,max_=0.4,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#f62336']),).reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 

在这里插入图片描述
全国居民人均食品烟酒消费支出达 6397 元,占全年人均消费支出的近三分之一
食品烟酒支出前十的省市中,上海再次荣登榜首,北方只有北京和天津上榜,但是从占比方面来看北京、上海是垫底的两个地区
山西、河南在食品烟酒上的支出排名最后两位

3.6 ‘住’-全国住房消费排行榜

df_house = df1.sort_values(by=['居住消费占比'],ascending=False).round(2)
x_data1 = df_house['地区'].values.tolist()[::-1]
y_data1 = df_house['居住消费占比'].values.tolist()[::-1]
y_data2 = df_house['居住'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [18000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='6-全国住房消费大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.2,max_=0.4,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#006064']),).reversal_axis()
)
# b1.render_notebook()
grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 

在这里插入图片描述
北京(0.4)、上海(0.36)两地人民在居住上的消费排名前两位,果然房价还是得看北上广,接近40%的消费都在住房上面
重庆、宁夏、四川以0.19的占比排在最后三位,这方面看住房压力还是比较小的

3.7 ‘行’-全国交通消费排行榜

df_house = df1.sort_values(by=['交通通信'],ascending=False).round(2)
x_data1 = df_house['地区'].values.tolist()[::-1]
y_data1 = df_house['交通通信消费占比'].values.tolist()[::-1]
y_data2 = df_house['交通通信'].values.tolist()[::-1]b1 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data2,category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideRight", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [0, 30, 30, 0],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,'color':'#E91E63'}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),).reversal_axis()
)b2 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", [5000]*len(y_data2),category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(is_show=False,position="right", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.2,'color':'#fff'}},).set_global_opts(xaxis_opts=opts.AxisOpts(position='top'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=13,formatter="{value}")),title_opts=opts.TitleOpts(title='7-全国交通消费大省排行榜',subtitle='-- 制图@公众号:Python当打之年 --',pos_top='2%',pos_left="2%",title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)),legend_opts=opts.LegendOpts(pos_right="5%",  pos_top="5%",  orient="vertical")).reversal_axis()
)b3 = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735')).add_xaxis(x_data1).add_yaxis("", y_data1, category_gap='35%').set_series_opts(label_opts=opts.LabelOpts(position="insideLeft", font_size=12, font_weight='bold', formatter='{c}'),itemstyle_opts={"normal": {"barBorderRadius": [30, 30, 30, 30],'shadowBlur': 10,'shadowColor': 'rgba(0,191,255,0.5)','shadowOffsetY': 1,'opacity': 0.8,}},).set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),yaxis_opts=opts.AxisOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(dimension=0,pos_right='2%',pos_bottom='4%',is_show=False, min_=0.1,max_=0.17,range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#33691e']),).reversal_axis()
)grid = Grid(init_opts=opts.InitOpts(theme='dark',width='1000px', height='1500px',bg_color='#0d0735'))
grid.add(b3, grid_opts=opts.GridOpts(pos_left='70%',pos_top='8%',pos_right='15%'))
grid.add(b2, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))
grid.add(b1, grid_opts=opts.GridOpts(pos_left='15%',pos_top='8%',pos_right='40%'))grid.render_notebook() 
  • 上海、浙江、广东、北京、天津等地居民在交通通信上的实际花费排名前五位
  • 青海、宁夏两地以0.17的交通通信消费占比排名前二位,北京、上海在这一项上的占比分别为0.1、0.11

相关内容

热门资讯

安卓系统限制无法录音,探索无法... 你有没有遇到过这种情况?手机里明明装了录音软件,却突然发现,哎呀妈呀,竟然无法录音了!这可真是让人头...
怎么降级手机系统安卓,操作指南... 手机系统升级了,新功能层出不穷,但有时候,你可能会觉得,这系统太卡了,想回到那个流畅如丝的年代。别急...
米oa系统是安卓系统吗,深入解... 亲爱的读者,你是否曾好奇过,米OA系统是不是安卓系统的一员?这个问题,就像是一颗好奇的种子,悄悄地在...
手机刷安卓车载系统,手机刷机后... 你有没有发现,现在开车的时候,手机和车载系统之间的互动越来越紧密了呢?想象当你驾驶着爱车,一边享受着...
vivo安卓怎么降系统,viv... 手机用久了,是不是觉得系统越来越卡,运行速度大不如前?别急,今天就来教你怎么给vivo安卓手机降降级...
nova 4刷安卓系统,体验全... 最近手机界可是热闹非凡呢!听说华为nova 4要刷安卓系统了,这可真是让人兴奋不已。你有没有想过,你...
如果当初没有安卓系统,科技世界... 想象如果没有安卓系统,我们的生活会是怎样的呢?是不是觉得有点不可思议?别急,让我们一起穿越时空,探索...
安卓电视装win系统,系统转换... 亲爱的读者们,你是否曾想过,在你的安卓电视上装一个Windows系统,让它瞬间变身成为一台功能强大的...
安卓手机还原系统好处,重拾流畅... 你有没有遇到过安卓手机卡顿、运行缓慢的情况?别急,今天就来给你揭秘一下安卓手机还原系统的那些好处,让...
安卓系统能跑win吗,探索跨平... 你有没有想过,你的安卓手机里能不能装上Windows系统呢?这听起来是不是有点像科幻电影里的情节?别...
安卓车载系统蓝牙设置,畅享智能... 你有没有发现,现在开车的时候,手机和车载系统之间的互动越来越频繁了呢?这不,今天就来给你详细说说安卓...
奥利奥安卓系统,探索新一代智能... 你有没有想过,一块小小的奥利奥饼干竟然能和强大的安卓系统扯上关系?没错,今天就要来聊聊这个跨界组合,...
微信使用安卓系统,功能解析与操... 你有没有发现,现在用微信的人越来越多了呢?尤其是安卓系统的用户,简直就像潮水一样涌来。今天,就让我带...
体验最新原生安卓系统,极致体验... 你有没有想过,手机系统就像是我们生活的调味品,有时候换一种口味,生活都会变得有趣起来呢?最近,我体验...
安卓系统能玩原神,尽享奇幻冒险... 你有没有想过,在安卓系统上也能畅玩《原神》这样的热门游戏呢?没错,就是那个画面精美、角色丰富、玩法多...
安卓写手机银行系统,基于安卓平... 你有没有想过,手机银行系统在我们日常生活中扮演了多么重要的角色呢?每天刷刷手机,就能轻松管理账户,转...
僵尸之夜恐怖安卓系统,揭秘恐怖... 僵尸之夜,恐怖安卓系统来袭!想象一个寂静的夜晚,你正沉浸在美梦中,突然,一阵诡异的铃声打破了夜的宁静...
谷歌框架和安卓系统,构建智能移... 你有没有想过,为什么你的手机那么聪明,能帮你找到路线,还能帮你拍出美美的照片呢?这都要归功于一个超级...
安卓系统和oppo系统哪个流畅... 你有没有想过,手机系统哪个更流畅呢?安卓系统和OPPO系统,这两个名字听起来就让人心动。今天,咱们就...
安卓怎么用微软系统,利用微软系... 你是不是也和我一样,对安卓手机上的微软系统充满了好奇?想象那熟悉的Windows界面在你的安卓手机上...