Potions (Hard Version) and (Easy Version)(背包DP + 反悔贪心)
创始人
2024-05-28 20:10:45
0

@[TOC](Potions (Hard Version) and (Easy Version))

一、Potions(Easy Version)

1、问题

在这里插入图片描述

2、分析(背包DP + 贪心)

简而言之就是我们需要从左到右开始选数字,选的过程中我们需要保证我们选的数字的和始终是大于等于0的,在满足这个条件的情况下求出我们所选的数字的个数的最大值。

由于这个简单版本的数据范围是2000,还是比较小的,所以我们可以使用O(n2)O(n^2)O(n2)的DP来解决。

假设我们的DP数组是: f[i][j]f[i][j]f[i][j]

这里的一个难点就是这个数组的含义是什么?

我们这里的定义是:在前iii个数字里面选,恰好选择jjj个数字时,数字之和的最大值。

我们先来解释一下,为什么我们要存储最大值。

假设我们在前iii个物品里选择了jjj个,那么这jjj个数字的和越大,我们后续的选择空间越大,这是一种贪心的想法。

那么我们如何求出最后的结果呢?

根据题目要求,我们的f[i][j]≥0f[i][j]\geq 0f[i][j]≥0。

所以我们可以去遍历f[n][i]f[n][i]f[n][i],只要这个数大于等于0,我们就可以让我们的ans=ians = ians=i。最后一个大于等于0的f[n][i]f[n][i]f[n][i]所对应的iii就是我们的答案。

转移方程:
f[i][j]={f[i−1][j]max(f[i−1][j−1]+a[i],f[i−1][j])f[i−1][j−1]≥0f[i][j] = \begin{cases} f[i - 1][j]\\ max\bigg(f[i - 1][j - 1] + a[i], f[i -1][j]\bigg)&f[i- 1][j- 1]\geq 0 \end{cases} f[i][j]=⎩⎧​f[i−1][j]max(f[i−1][j−1]+a[i],f[i−1][j])​f[i−1][j−1]≥0​
因为只有在当前数字的和大于等于0的时候,我们才能去选下一个。所以我们需要让f[i−1][j−1]f[i-1][j-1]f[i−1][j−1]大于0。

3、代码

#include
#define endl '\n'
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair pii;
const int N = 2010;
ll a[N], f[N][N];
void solve()
{int n;cin >> n;for(int i = 1; i <= n; i ++ )cin >> a[i];memset(f, 0xcf, sizeof f);f[0][0] = 0;for(int i = 1; i <= n; i ++ ){for(int j = 0; j <= i; j ++ ){f[i][j] = f[i - 1][j];if(j >= 1 && f[i - 1][j - 1]  >= 0)f[i][j] = max(f[i - 1][j - 1] + a[i], f[i][j]);}}int ans = 0;for(int i = 0; i <= n; i ++ ){if(f[n][i] >= 0)ans = i;}cout << ans << endl;
}int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);solve();
}

二、Potions(Hard Version)

1、问题

在这里插入图片描述

2、分析(反悔贪心)

这道题和上一道题的唯一区别就是我们的数据范围变得很大,所以二维DP数组是存储不下的,即使我们逆序遍历从而优化掉一维的话,我们的时间复杂度也是平方级别的,依然过不了。

因此,我们就只能想别的方法了。

这里采用的也是贪心策略

我们从左到右开始枚举每一个数,在枚举的过程中我们会发现,正数一定是要选择的,所以遇到正数我们就加上即可。

这里的重点是负数的选择。

从左到右枚举每一个数,假设每一个数都选择,当当前的总和小于0的时候,我们就把从开始位置到当前位置之间的负数中最小的一个删掉。

为什么这样做呢?

假设枚举到第iii个的时候,总和sumsumsum从正数变成负数。再假设此时我们选择了kkk个数(不算第iii个)。

那么很明确的是,sumsumsum是由于第iii个数的加入才变成了负数, 说明第iii个数一定是负数。那么我们当然可以选择删除第iii个数,这样的话,我们就能保证sumsumsum依然是正数。

但不选第iii个数就是最优解吗?其实不一定的。

如果在111到iii之间存在一个小于第iii个数的最小的负数。如果我们删除了这个最小的负数,选择了第iii个数,我们将这两个数字记作minminmin和ppp。那么此时的总和就是sum−min+psum-min+psum−min+p由minminmin小于ppp所以p−minp-minp−min是大于0的。

而此时我们选了几个数呢?选择第iii个数,我们此时总共选了k+1k+1k+1个数,删除最小的负数,即再减一,所以总共还是选择了kkk个数。

其实很容易证明,当我们经过上述操作后,我们的sumsumsum是从111到iii中选择kkk个数时,最大的数字和。式子sum+p−minvsum+p-minvsum+p−minv就可以证明,因为minvminvminv是最小的,所以这个式子是最大的。

也就是说,通过上述的操作,我们维护的都是选择kkk个数时的最优解(sumsumsum最大)。

通过刚才的easyeasyeasy版本的讲解,我们也知道,选择相同个数的数字时,总和越大越好,总和越大说明我们后续的选择越多。

不妨看出,通过上面的操作,我们的kkk是不受影响的, 即这样调整不会使得我们的答案变小。

如果感性认知的话,就是我们时刻保持最优解去看能不能喝下一瓶。

综上,我们的做法可以描述为,从左到右遍历,利用总和sumsumsum记录,只要sumsumsum小于0了,我们就删除遍历过的数中的最小负数。

在一堆数字中选出一个最值,我们可以使用优先队列。

我们的时间复杂度即O(nlogn)O(nlogn)O(nlogn)。

而我们发现,这个贪心过程中我们出现了反悔的操作,即我们一开始喝了一瓶,但是后来发现喝的这一瓶不是最优解,那么我们就反悔了,这一瓶不喝了。这种贪心就被称为反悔贪心

3、代码

#include
#define endl '\n'
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair pii;
const int N = 2e5 + 10;
ll a[N], f[N];
void solve()
{int n;cin >> n;for(int i = 0; i < n; i ++ )cin >> a[i];priority_queueq;ll ans = 0, sum = 0;for(int i = 0; i < n; i ++ ){sum += a[i];ans ++;if(a[i] < 0)q.push( - a[i]);if(sum < 0){sum += q.top();q.pop();ans --;}}cout << ans << endl;}int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);solve();
}

相关内容

热门资讯

安卓系统限制无法录音,探索无法... 你有没有遇到过这种情况?手机里明明装了录音软件,却突然发现,哎呀妈呀,竟然无法录音了!这可真是让人头...
怎么降级手机系统安卓,操作指南... 手机系统升级了,新功能层出不穷,但有时候,你可能会觉得,这系统太卡了,想回到那个流畅如丝的年代。别急...
米oa系统是安卓系统吗,深入解... 亲爱的读者,你是否曾好奇过,米OA系统是不是安卓系统的一员?这个问题,就像是一颗好奇的种子,悄悄地在...
手机刷安卓车载系统,手机刷机后... 你有没有发现,现在开车的时候,手机和车载系统之间的互动越来越紧密了呢?想象当你驾驶着爱车,一边享受着...
vivo安卓怎么降系统,viv... 手机用久了,是不是觉得系统越来越卡,运行速度大不如前?别急,今天就来教你怎么给vivo安卓手机降降级...
nova 4刷安卓系统,体验全... 最近手机界可是热闹非凡呢!听说华为nova 4要刷安卓系统了,这可真是让人兴奋不已。你有没有想过,你...
如果当初没有安卓系统,科技世界... 想象如果没有安卓系统,我们的生活会是怎样的呢?是不是觉得有点不可思议?别急,让我们一起穿越时空,探索...
安卓电视装win系统,系统转换... 亲爱的读者们,你是否曾想过,在你的安卓电视上装一个Windows系统,让它瞬间变身成为一台功能强大的...
安卓手机还原系统好处,重拾流畅... 你有没有遇到过安卓手机卡顿、运行缓慢的情况?别急,今天就来给你揭秘一下安卓手机还原系统的那些好处,让...
安卓系统能跑win吗,探索跨平... 你有没有想过,你的安卓手机里能不能装上Windows系统呢?这听起来是不是有点像科幻电影里的情节?别...
安卓车载系统蓝牙设置,畅享智能... 你有没有发现,现在开车的时候,手机和车载系统之间的互动越来越频繁了呢?这不,今天就来给你详细说说安卓...
奥利奥安卓系统,探索新一代智能... 你有没有想过,一块小小的奥利奥饼干竟然能和强大的安卓系统扯上关系?没错,今天就要来聊聊这个跨界组合,...
微信使用安卓系统,功能解析与操... 你有没有发现,现在用微信的人越来越多了呢?尤其是安卓系统的用户,简直就像潮水一样涌来。今天,就让我带...
体验最新原生安卓系统,极致体验... 你有没有想过,手机系统就像是我们生活的调味品,有时候换一种口味,生活都会变得有趣起来呢?最近,我体验...
安卓系统能玩原神,尽享奇幻冒险... 你有没有想过,在安卓系统上也能畅玩《原神》这样的热门游戏呢?没错,就是那个画面精美、角色丰富、玩法多...
安卓写手机银行系统,基于安卓平... 你有没有想过,手机银行系统在我们日常生活中扮演了多么重要的角色呢?每天刷刷手机,就能轻松管理账户,转...
僵尸之夜恐怖安卓系统,揭秘恐怖... 僵尸之夜,恐怖安卓系统来袭!想象一个寂静的夜晚,你正沉浸在美梦中,突然,一阵诡异的铃声打破了夜的宁静...
谷歌框架和安卓系统,构建智能移... 你有没有想过,为什么你的手机那么聪明,能帮你找到路线,还能帮你拍出美美的照片呢?这都要归功于一个超级...
安卓系统和oppo系统哪个流畅... 你有没有想过,手机系统哪个更流畅呢?安卓系统和OPPO系统,这两个名字听起来就让人心动。今天,咱们就...
安卓怎么用微软系统,利用微软系... 你是不是也和我一样,对安卓手机上的微软系统充满了好奇?想象那熟悉的Windows界面在你的安卓手机上...