第三十九章 linux-并发解决方法二(互斥锁mutex)
创始人
2024-05-28 23:33:51
0

第三十九章 linux-并发解决方法二(互斥锁mutex)


文章目录

  • 第三十九章 linux-并发解决方法二(互斥锁mutex)
  • 互斥锁的定义与初始化
  • 互斥锁的DOWN操作
  • 互斥锁的UP操作


用count=1的信号量实现的互斥方法还不是Linux下经典的用法,Linux内核针对count=1的信号量重新定义了一个新的数据结构,一般都称其为互斥锁或者互斥体。同时内核根据使用场景的不同,把用于信号量的DOWN和UP操作在struct mutex上作了优化与扩展,专门用于这种新的数据类型。

互斥锁的定义与初始化

互斥锁mutex的概念本来就来自semaphore,如果去除掉那些跟调试相关的成员,struct mutex和struct semaphore并没有本质的不同:

struct mutex {/* 1: unlocked, 0: locked, negative: locked, possible waiters */atomic_t        count;spinlock_t        wait_lock;struct list_head    wait_list;
#if defined(CONFIG_DEBUG_MUTEXES) || defined(CONFIG_MUTEX_SPIN_ON_OWNER)struct task_struct    *owner;
#endif
#ifdef CONFIG_MUTEX_SPIN_ON_OWNERstruct optimistic_spin_queue osq; /* Spinner MCS lock */
#endif
#ifdef CONFIG_DEBUG_MUTEXESvoid            *magic;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOCstruct lockdep_map    dep_map;
#endif
};

如同struct semaphore一样,对struct mutex的初始化不能直接通过操作其成员变量的方式进行,而应该利用内核提供的宏或者函数定义一个静态的struct mutex变量同时初始化的方法是利用内核的DEFINE_MUTEX:


#define __MUTEX_INITIALIZER(lockname) \{ .count = ATOMIC_INIT(1) \, .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \, .wait_list = LIST_HEAD_INIT(lockname.wait_list) \__DEBUG_MUTEX_INITIALIZER(lockname) \__DEP_MAP_MUTEX_INITIALIZER(lockname) }#define DEFINE_MUTEX(mutexname) \struct mutex mutexname = __MUTEX_INITIALIZER(mutexname)

如果在程序执行期间要初始化一个mutex变量,则可以使用mutex_init宏。去除掉那些与调试相关的操作之后,mutex_init宏可以展开成如下的函数定义形式:

# define mutex_init(mutex) \
do {                            \static struct lock_class_key __key;        \\__mutex_init((mutex), #mutex, &__key);        \
} while (0)void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{atomic_set(&lock->count, 1);spin_lock_init(&lock->wait_lock);INIT_LIST_HEAD(&lock->wait_list);mutex_clear_owner(lock);
#ifdef CONFIG_MUTEX_SPIN_ON_OWNERosq_lock_init(&lock->osq);
#endifdebug_mutex_init(lock, name, key);
}

互斥锁的DOWN操作

互斥锁mutex上的DOWN操作在Linux内核中为mutex_lock函数,定义如下:

void __sched mutex_lock(struct mutex *lock)
{might_sleep();/** The locking fastpath is the 1->0 transition from* 'unlocked' into 'locked' state.*/__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);mutex_set_owner(lock);
}

函数的设计思想体现在__mutex_fastpath_lock和__mutex_lock_slowpath两条主线上,__mutex_fastpath_lock用来快速判断当前可否获得互斥锁,如果成功获得锁,则函数直接返回,否则进入到__mutex_lock_slowpath函数中·这种设计是基于这样一个事实:想要获得某一互斥锁的代码绝大部分时候都可以成功获得。由此延伸开来在代码层面就是,mutex_lock函数进入__mutex_lock_slowpath的概率很低。

__mutex_fastpath_lock是一平台相关函数,下面以ARM处理器为例,分析其代码实现:

static inline void
__mutex_fastpath_lock(atomic_t *count, void (*fail_fn)(atomic_t *))
{int __done, __res;__asm__ __volatile__ (L1            "movli.l    @%2, %0    \n""add        #-1, %0    \n""movco.l    %0, @%2    \n""movt        %1    \n": "=&z" (__res), "=&r" (__done): "r" (&(count)->counter): "t");if (unlikely(!__done || __res != 0))fail_fn(count);
}

函数在百处通过ldrex完成“__res=count->counter,L2处完成__res=__res-1,L3处试图用__res的当前值来更新count->counter.这里说“试图”是因为这个更新的操作未必会成功,主要是考虑到可能有别的进程也在操作count->counter,为不使这种可能的竞争引起对
作count->counter值更新的混乱,这里用了ARM指令中用于实现互斥访问的指令ldrex和strex(前面在spinlock的代码分析时己经提过)。ldrex和strex保证了对count->counter读取一更新一写回”操作序列的原子性。如果L3处的更新操作成功,那么_ex_flag将为0。

接下来在__res|=__ex_flag执行完之后,通过if语句判断__res是否为0,有两种情况会导致__res不为0:一是在调用这个函数前count->counter=0,表明互斥锁己经被别的进程获得,
这样L2处的__res=-1:二是在L3处的更新操作不成功,表明当前有另外一个进程也在对count->counter进行同样的操作·这两种情况都将导致__mutex_fastpath_lock不能直接返回,而是进入fail_fn也就是调用__mutex_lock_slowpath。

此处if语句中的unlikely是利用GCC编译优化扩展的一个宏,这里的意思是条件语句__res!=0为真的可能性很小,编译器借此可以调整一些编译后代码的顺序达到某种程度的优化。与之对应的是likely。
如果__mutex_fastpath_lock函数不能在第一时间获得互斥锁返回,那么将进入__mutex_lock_slowpath,正如其名字所预示的那样,代码将进入一段艰难坎坷的旅途。

在Linux源码中,__mutex_lock_slowpath函数与信号量DOWN操作中的函数非常相似,不过__mutex_lock_slowpath在把当前进程放入mutex的wait_list之前会试图多次询问mutex中的count是否为1,也就是说当前进程在进入wait_list之前会多次考察别的进程是否己经释放了这个互斥锁。这主要基于这样一个事实:拥有互斥锁的进程总是会在尽可能短的时间里释放·如果别的进程己经释放了该互斥锁·那么当前进程将可以获得该互斥锁而没有必要再去睡眠。

互斥锁的UP操作

互斥锁的操作为mutex_unlock,函数定义如下:

void __sched mutex_unlock(struct mutex *lock)
{/** The unlocking fastpath is the 0->1 transition from 'locked'* into 'unlocked' state:*/
#ifndef CONFIG_DEBUG_MUTEXES/** When debugging is enabled we must not clear the owner before time,* the slow path will always be taken, and that clears the owner field* after verifying that it was indeed current.*/mutex_clear_owner(lock);
#endif__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
}

和mutex_lock函数一样,mutex_unlock函数也有两条主线:__mutex_fastpath_unlock和__mutex_unlock_slowpath,分别用于对互斥锁的快速和慢速解锁操作。

static inline void
__mutex_fastpath_unlock(atomic_t *count, void (*fail_fn)(atomic_t *))
{int __done, __res;__asm__ __volatile__ ("movli.l    @%2, %0    \n\t""add        #1, %0    \n\t""movco.l    %0, @%2 \n\t""movt        %1    \n\t": "=&z" (__res), "=&r" (__done): "r" (&(count)->counter): "t");if (unlikely(!__done || __res <= 0))fail_fn(count);
}

这里除了是将count->counter的值加1以外,代码和__mutex_fastpath_lock中的几乎完全一样。在最后的if语句中,导致代码count->counter不为0也有两种情况:一是在调用这个函数前count->counter不为0,表明在当前进程占有互斥锁期间有别的进程竞争该互斥锁:二是对count->counter的更新操作不成功,表明当前有另外一个进程也在对count->counter进行操作,这种情况主要是针对别的进程此时调用mutex1k函数导致的竞争,因为互斥的原因别的进程此时不可能调用mutex_lock。这种情况的处理是非常重要的,不只是关系到count->counter正确更新的问题,还涉及能否防止一个唤醒操作的丢失。

在没有别的进程竞争该互斥锁的情况下,__mutex_fastpath_unlock函数要完成的工作最简单,把count->counter的值加1然后返回·如果有别的进程在竞争该互斥锁,那么函数进入__mutex_unlock_slowpath这个函数主要用来唤醒在当前mutex的wait_list中休眠的进程,如同up函数一样。

相关内容

热门资讯

安卓系统的经典铃声,唤醒回忆的... 你有没有发现,手机里那些熟悉的铃声,有时候就像老朋友一样,陪伴着我们度过了无数个日日夜夜?今天,就让...
鸿蒙系统还是安卓系统号,系统之... 你有没有想过,手机里的操作系统就像是我们的大脑,它决定了我们手机能做什么,不能做什么。现在,就让我们...
安卓系统装贝达,安卓系统下的贝... 你有没有想过,你的安卓手机装上贝达系统后,会有怎样的奇妙体验呢?想象你的手机瞬间变身,变得流畅无比,...
安卓系统沃尔沃音响设置,轻松享... 你有没有发现,自从你的安卓手机和沃尔沃音响完美结合后,开车时的音乐体验简直就像是在音乐厅里一样?没错...
米10系统基于安卓,基于安卓的... 你知道吗?最近手机圈里可是热闹非凡呢!小米10这款手机,自从发布以来就吸引了无数人的目光。而它所搭载...
命令安卓系统怎么卸载,安卓系统... 手机里装了太多不用的应用,是不是感觉手机都快要爆炸了?别急,今天就来教你怎么轻松卸载安卓系统中的应用...
安卓系统安装小学教材,安卓系统... 你有没有想过,手机里的安卓系统竟然能装上小学教材呢?没错,你没听错!在这个信息爆炸的时代,科技的发展...
华为安卓系统锁住了,揭秘锁屏背... 最近是不是发现你的华为手机有点儿“顽皮”了?它突然间变得神秘起来,屏幕上那个熟悉的安卓系统仿佛被施了...
安卓电脑改苹果系统,跨越平台的... 你有没有想过,把你的安卓电脑改头换面,变成一个优雅的苹果系统使用者呢?想象那流畅的界面,那独特的触控...
安卓系统怎么按后台,并在任务完... 你有没有遇到过这种情况:手机屏幕一黑,安卓系统就自动进入后台了?是不是觉得有点小郁闷,想要手动切换回...
2021年安卓系统ui,202... 你有没有发现,手机界面最近好像换了个模样?没错,2021年的安卓系统UI可是来了一场大变身呢!今天,...
安卓系统程序编写软件,打造个性... 你有没有想过,手机里的那些神奇应用是怎么诞生的呢?没错,就是那些让你在闲暇时光刷刷视频、在通勤路上玩...
自动开机安卓系统,智能生活新篇... 你有没有想过,当你的安卓手机在清晨的第一缕阳光照耀下自动开机,那种轻松自在的感觉?想象不用再手动解锁...
真我平板x安卓系统,畅享智能生... 亲爱的读者们,你是否也在寻找一款既能满足你对平板电脑的期待,又能让你畅享安卓系统带来的无限乐趣的设备...
恒星安卓系统官网,引领未来智能... 亲爱的读者们,你是否曾好奇过那些闪耀在夜空中的星星,它们是如何在浩瀚的宇宙中熠熠生辉的呢?今天,我要...
u8安卓系统,功能与特色深度解... 你知道吗?在手机操作系统界,有一个小家伙可是相当受欢迎的,它就是U8安卓系统。今天,就让我带你来一探...
花椒安卓系统美颜功能,打造完美... 你有没有发现,现在拍照已经不仅仅是记录生活的工具了,它更是一种艺术创作呢!而在这其中,花椒安卓系统的...
戴尔平板升级安卓系统,畅享安卓... 你有没有发现,戴尔平板最近好像悄悄地来了一次大变身?没错,就是那个我们熟悉的戴尔平板,它现在竟然可以...
安卓助手怎么升级系统,畅享最新... 亲爱的安卓用户们,你是否也和我一样,对安卓系统的升级充满了期待和好奇呢?每次系统升级,都仿佛是给我们...
国产安卓系统的发展,国产安卓系... 你知道吗?在我国科技飞速发展的今天,国产安卓系统可是越来越受到大家的关注呢!它就像一颗冉冉升起的新星...