学习自https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
pytorch中数据导入和预处理主要用torch.utils.data.DataLoader 和 torch.utils.data.Dataset
Dataset 存储样本及其相应的标签,DataLoader在数据上生成一个可迭代对象(Dataset stores the samples and their corresponding labels, and DataLoader wraps an iterable around the Dataset.)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor# Download training data from open datasets.
training_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor(),
)# Download test data from open datasets.
test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor(),
)
将数据集作为参数传递给 DataLoader。 这在我们的数据集上包装了一个可迭代对象,并支持自动批处理、采样、混洗和多进程数据加载。并且每一个batch大小为64。
batch_size = 64# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)for X, y in test_dataloader:print(f"Shape of X [N, C, H, W]: {X.shape}")print(f"Shape of y: {y.shape} {y.dtype}")break
MNIST手写数字数据集的图片是2828的,所以第一层的输入为2828。
因为识别结果是0~9这10种,所以最后一层的输出就是10个。
我们需要定义神经网络结构,这部分在__init__(self)部分实现。
且我们需要forward部分定义网络正向传播的方法。
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.linear_relu_stack = nn.Sequential(nn.Linear(28 * 28, 512),nn.ReLU(),nn.Linear(512, 512),nn.ReLU(),nn.Linear(512, 10))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logitsmodel = NeuralNetwork().to(device)
print(model)
首先,我们需要先定义损失函数和优化器(优化梯度下降算法)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) # lr为学习率
在一次循环中,神经网络通过forward进行预测(我们写的forward函数),然后再利用预测误差。通过反向传播来进行梯度下降(pytorch帮我们实现)。
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)model.train()for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)# Compute prediction errorpred = model(X)loss = loss_fn(pred, y)# Backpropagationoptimizer.zero_grad()loss.backward()optimizer.step()if batch % 100 == 0:loss, current = loss.item(), (batch + 1) * len(X)print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(train_dataloader, model, loss_fn, optimizer)test(test_dataloader, model, loss_fn)
print("Done!")