快速幂----快速求解底数的n次幂
创始人
2024-05-29 15:05:00
0

目录

一.快速幂

1.问题的引入

2.快速幂的介绍

3.核心思想

4.代码实现

 2.猴子碰撞的方法数

1.题目描述

2.问题分析

3.代码实现


一.快速幂

1.问题的引入

问题:求解num的n次幂,结果需要求余10^9+7

对于这个问题我们可能就是直接调用函数pow(a,b)来直接求解a的b次幂问题,但是如果求解的结果很大,超过的double的数值范围,我们要求对最终的结果求余10^9+7,我们如果直接调用pow()函数的话,求解出来的数已经超出了double的最大范围,根本无法求出,这个时候我们是否可以考虑在求解的过程中每一次的结果都求余10^9+7,而不是只在最终的结果求余10^9+7这样最终的结果肯定是小于10^9+7,一定不会超出最大的范围.

2.快速幂的介绍

快速幂:快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N),与朴素的O(N)相比效率有了极大的提高。

3.核心思想

例如计算3^{^{10}},10的二进制为1010,相当于求解3^{1010}次方

3^{^{10}}=3*3*3*3*3*3*3*3*3*3

=(3*3)*(3*3*3*3*3*3*3*3)

=3^{2}*3^{8}

相当于我们每次对10的二进制的每一个位置求权(如果是二进制这个位是1),则乘以当前的叠加的数,

例如进行求余3^{^{10}}的步骤 :

定义变量ans保存3^{^{10}}的结果   1010位10的二进制表达方式

1010的第一位为0,这个时候num=num*num=3^{2};    二进制形式为:3^{0010}

1010的第二位为0,这个时候求权为1,ans=ans*num=3^{2}  num=num*num=3^{4};二进制形式为:3^{0100}

1010的第三位为0,这个时候num=num*num=3^{8}; 二进制形式为:3^{1000}

1010的第四位为1,这个时候求权为1,ans=ans*num=3^{2}*3^{8}  num=num*num=3^{16};

4.代码实现

1.求余10^9+7的版本,返回数据类型为int的结果

    public int quickPow(long num,int n){long ans=1;long mod=1000000007;while(n!=0){if((n&1)==1)ans=(ans*num)%mod;num = num * num % mod;n>>=1;}return (int)(ans%mod);}

 2.不求余的版本,返回数据类型为long的结果

    public long quickPow(long num,int n){long ans=1;while(n!=0){if((n&1)==1)ans=ans*num;num = num * num;n>>=1;}return ans;}

 2.猴子碰撞的方法数

1.题目描述

现在有一个正凸多边形,其上共有 n 个顶点。顶点按顺时针方向从 0n - 1 依次编号。每个顶点上 正好有一只猴子 。下图中是一个 6 个顶点的凸多边形。

 

每个猴子同时移动到相邻的顶点。顶点 i 的相邻顶点可以是:

  • 顺时针方向的顶点 (i + 1) % n ,或
  • 逆时针方向的顶点 (i - 1 + n) % n

如果移动后至少有两个猴子位于同一顶点,则会发生 碰撞

返回猴子至少发生 一次碰撞 的移动方法数。由于答案可能非常大,请返回对 109+7 取余后的结果。

注意,每只猴子只能移动一次。

力扣: 力扣

2.问题分析

正难则反,题目问的是至少发生一次碰撞的移动次数,我们不妨把问题转换为求解猴子一次都不碰撞的次数,猴子一共有2的n次幂中跳跃的方式,求中有两种是一次都不碰撞的,一种是猴子全部顺时针进行跳跃,一种是猴子逆时针进行跳跃,所以猴子至少发生一次碰撞的次数=猴子总共的移动次数-2

3.代码实现

    public int monkeyMove(int n) {long ans=1,a=2;long mod=1000000007;while(n!=0){if((n&1)==1)ans=(ans*a)%mod;a = a * a % mod;n>>=1;}return (int)((ans+mod-2)%mod);}

 

 

相关内容

热门资讯

安卓系统用的华为应用,探索智能... 你知道吗?在安卓系统里,华为的应用可是个宝库呢!它们不仅功能强大,而且使用起来超级方便。今天,就让我...
安卓变ios系统魅蓝 你知道吗?最近有个朋友突然告诉我,他要把自己的安卓手机换成iOS系统,而且还是魅蓝品牌的!这可真是让...
幻书启世录安卓系统,安卓世界中... 亲爱的读者们,你是否曾在某个夜晚,被一本神奇的书所吸引,仿佛它拥有着穿越时空的力量?今天,我要带你走...
电脑安装安卓系统进不去,安卓系... 电脑安装安卓系统后竟然进不去,这可真是让人头疼的问题啊!你是不是也遇到了这种情况,心里直呼“怎么办怎...
用键盘切换控制安卓系统,畅享安... 你有没有想过,用键盘来控制你的安卓手机?是的,你没听错,就是那个我们每天敲敲打打的小玩意儿——键盘。...
小米安卓镜像系统在哪,小米安卓... 你有没有想过,你的小米手机里有一个隐藏的宝藏——安卓镜像系统?没错,就是那个可以让你的手机瞬间变身成...
安卓手机下载排班系统,高效排班... 你有没有想过,每天忙碌的工作中,有没有什么好帮手能帮你轻松管理时间呢?今天,就让我来给你介绍一个超级...
桌面组件如何弄安卓系统,桌面组... 亲爱的桌面爱好者们,你是否曾梦想过将安卓系统搬到你的电脑桌面上?想象那些流畅的动画、丰富的应用,还有...
安卓13系统介绍视频,新功能与... 亲爱的读者们,你是否对安卓13系统充满好奇?想要一探究竟,却又苦于没有足够的时间去研究?别担心,今天...
车机安卓7.1系统,功能升级与... 你有没有发现,现在的车机系统越来越智能了?尤其是那些搭载了安卓7.1系统的车机,简直就像是个贴心的智...
安卓系统下如何读pdf,And... 你有没有遇到过这种情况:手机里存了一大堆PDF文件,可是怎么也找不到一个能顺畅阅读的工具?别急,今天...
安卓系统全国通用的吗,畅享智能... 你有没有想过,为什么你的手机里装的是安卓系统呢?安卓系统,这个名字听起来是不是有点神秘?今天,就让我...
假苹果手机8安卓系统,颠覆传统... 你有没有想过,如果苹果手机突然变成了安卓系统,会是怎样的景象呢?想象那熟悉的苹果外观,却运行着安卓的...
安卓12.0系统vivo有吗,... 你有没有听说最近安卓系统又升级啦?没错,就是那个让手机焕然一新的安卓12.0系统!那么,咱们国内的手...
核心芯片和安卓系统,探索核心芯... 你知道吗?在科技的世界里,有一对“黄金搭档”正悄悄改变着我们的生活。他们就是——核心芯片和安卓系统。...
如何调安卓系统屏幕颜色,安卓系... 亲爱的手机控们,你是否曾觉得安卓系统的屏幕颜色不够个性,或者是因为长时间盯着屏幕而感到眼睛疲劳?别担...
旧台式电脑安装安卓系统,轻松安... 你那台旧台式电脑是不是已经服役多年,性能逐渐力不从心,却又不忍心让它退役呢?别急,今天就来教你怎么给...
美国要求关闭安卓系统,科技霸权... 美国要求关闭安卓系统:一场技术革新还是政治博弈?在数字化时代,智能手机已经成为我们生活中不可或缺的一...
安卓系统日记本 你有没有发现,手机里的安卓系统日记本,简直就是记录生活点滴的宝藏库呢?想象每天忙碌的生活中,有没有那...
安卓手机广告最少的系统,探索安... 你有没有发现,用安卓手机的时候,广告总是无处不在,让人烦得要命?不过别急,今天我要给你揭秘一个秘密—...