机器学习中的距离和相似性计算以及python实现
创始人
2024-05-30 04:58:32
0

机器学习中的距离和相似性计算以及python实现


欧氏距离

也称欧几里得距离,是指在m维空间中两个点之间的真实距离。欧式距离在ML中使用的范围比较广,也比较通用,就比如说利用k-Means对二维平面内的数据点进行聚类,对魔都房价的聚类分析(price/m^2 与平均房价)等。

两个n维向量a(x11,x12.....x1n)(x_{11},x_{12}.....x_{1n})(x11​,x12​.....x1n​)与 b(x21,x22.....x2n)(x_{21},x_{22}.....x_{2n})(x21​,x22​.....x2n​)间的欧氏距离

python 实现为:

def EuclideanDistance(x, y):import numpy as npx = np.array(x)y = np.array(y)return np.sqrt(np.sum(np.square(x-y)))

这里传入的参数可以是任意维的,该公式也适应上边的二维和三维

曼哈顿距离

D12=∑k=1n∣x1k−x2k∣D_{12}=\sum_{k=1}^{n}|x_{1k}-x_{2k}|D12​=k=1∑n​∣x1k​−x2k​∣

python 实现为:

def ManhattanDistance(x, y):import numpy as npx = np.array(x)y = np.array(y)return np.sum(np.abs(x-y))

切比雪夫距离

切比雪夫距离(Chebyshev Distance)的定义为:max( | x2-x1 | , |y2-y1 | , … ), 切比雪夫距离用的时候数据的维度必须是三个以上

python 实现为:

def ChebyshevDistance(x, y):import numpy as npx = np.array(x)y = np.array(y)return np.max(np.abs(x-y))

马氏距离

有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为

D(x)=(X−u)TS−1(X−u)D(x)=\sqrt {(X-u)^TS^{-1}(X-u)}D(x)=(X−u)TS−1(X−u)
python实现:

def MahalanobisDistance(x, y):'''马氏居立中的(x,y)与欧几里得距离的(x,y)不同,欧几里得距离中的(x,y)指2个样本,每个样本的维数为x或y的维数;这里的(x,y)指向量是2维的,样本个数为x或y的维数,若要计算n维变量间的马氏距离则需要改变输入的参数如(x,y,z)为3维变量。'''import numpy as npx = np.array(x)y = np.array(y)X = np.vstack([x,y])X_T = X.Tsigma = np.cov(X)sigma_inverse = np.linalg.inv(sigma)d1=[]for i in range(0, X_T.shape[0]):for j in range(i+1, X_T.shape[0]):delta = X_T[i] - X_T[j]d = np.sqrt(np.dot(np.dot(delta,sigma_inverse),delta.T))d1.append(d)return d1

夹角余弦

cosθ=a∗b∣a∣∣b∣cos \theta = \frac {a*b} {|a||b|}cosθ=∣a∣∣b∣a∗b​ cosθ=∑k=1nx1kx2k∑k=1nx1k2∑k=1nx2k2cos \theta = \frac {\sum_{k=1}^{n}x_{1k}x_{2k}} {\sqrt {\sum_{k=1}^{n}x_{1k}^2}\sqrt {\sum_{k=1}^{n}x_{2k}^2}}cosθ=∑k=1n​x1k2​​∑k=1n​x2k2​​∑k=1n​x1k​x2k​​

def moreCos(a,b):sum_fenzi = 0.0sum_fenmu_1,sum_fenmu_2 = 0,0for i in range(len(a)):sum_fenzi += a[i]*b[i]sum_fenmu_1 += a[i]**2 sum_fenmu_2 += b[i]**2 return sum_fenzi/( sqrt(sum_fenmu_1) * sqrt(sum_fenmu_2) )

闵可夫斯基距离

p∑k=1n∣x1k−x2k∣pp\sqrt{\sum_{k=1}^{n}|x_{1k}-x_{2k}|^p}pk=1∑n​∣x1k​−x2k​∣p

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离
python实现:

def MinkowskiDistance(x, y, p):import mathimport numpy as npzipped_coordinate = zip(x, y)return math.pow(np.sum([math.pow(np.abs(i[0]-i[1]), p) for i in zipped_coordinate]), 1/p)

汉明距离

两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数

def hanmingDis(a,b):sumnum = 0for i in range(len(a)):if a[i]!=b[i]:sumnum += 1return sumnum

杰卡德距离 & 杰卡德相似系数

杰卡德距离,杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

Jδ(A,B)=∣A∪B∣−∣A∩B∣∣A∪B∣J_{\delta}(A, B)=\frac{|A \cup B|-|A \cap B|}{|A \cup B|}Jδ​(A,B)=∣A∪B∣∣A∪B∣−∣A∩B∣​

def jiekadeDis(a,b):set_a = set(a)set_b = set(b)dis = float(len( (set_a | set_b) - (set_a & set_b) ) )/ len(set_a | set_b)return dis

杰卡德相似系数

两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

J(A,B)=∣A∩B∣∣A∪B∣J(A, B)=\frac{|A \cap B|}{|A \cup B|}J(A,B)=∣A∪B∣∣A∩B∣​

def jiekadeXSDis(a,b):set_a = set(a)set_b = set(b)dis = float(len(set_a & set_b)  )/ len(set_a | set_b)return dis

相关系数 & 相关距离

相关系数

ρXY=Cov⁡(X,Y)D(X)D(Y)=E((X−EX)(Y−EY))D(X)D(Y)\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}}=\frac{E((X-E X)(Y-E Y))}{\sqrt{D(X)} \sqrt{D(Y)}}ρXY​=D(X)​D(Y)​Cov(X,Y)​=D(X)​D(Y)​E((X−EX)(Y−EY))​

import mathdef c_Pearson(x, y):x_mean, y_mean = sum(x)/len(x), sum(y)/len(y)cov =0.0x_pow = 0.0y_pow = 0.0for i in range(len(x)):cov += (x[i]-x_mean) *(y[i] - y_mean)for i in range(len(x)):x_pow += math.pow(x[i] - x_mean, 2)for i in range(len(x)):y_pow += math.pow(y[i] - y_mean, 2)sumBm = math.sqrt(x_pow * y_pow)p = cov / sumBmreturn p

信息熵

衡量分布的混乱程度或分散程度的一种度量.

(X)=∑i=1n−pilog⁡2pi(X)=\sum_{i=1}^{n}-p_{i} \log _{2} p_{i}(X)=i=1∑n​−pi​log2​pi​

import numpy as npdata=['a','b','c','a','a','b']
data1=np.array(data)
#计算信息熵的方法
def calc_ent(x):"""calculate shanno ent of x"""x_value_list = set([x[i] for i in range(x.shape[0])])ent = 0.0for x_value in x_value_list:p = float(x[x == x_value].shape[0]) / x.shape[0]logp = np.log2(p)ent -= p * logpreturn ent

相关内容

热门资讯

哪个安卓机系统好用,探索安卓系... 你有没有想过,手机里的安卓系统就像是个大厨,不同的系统就像不同的烹饪手法,有的让你吃得津津有味,有的...
安卓如何控制苹果系统,从安卓到... 你知道吗?在这个科技飞速发展的时代,安卓和苹果两大操作系统之间的较量从未停歇。虽然它们各自有着忠实的...
安卓原生系统文件夹,安卓原生系... 你有没有发现,每次打开安卓手机,里面那些文件夹就像是一个个神秘的宝箱,里面藏着各种各样的宝贝?今天,...
基于安卓系统的游戏开发,从入门... 你有没有想过,为什么安卓手机上的游戏总是那么吸引人?是不是因为它们就像是你身边的好朋友,随时随地都能...
安卓系统怎样装驱动精灵,安卓系... 你那安卓设备是不是突然间有点儿不给力了?别急,今天就来手把手教你如何给安卓系统装上驱动精灵,让你的设...
如何本地安装安卓系统包,详细步... 你有没有想过,把安卓系统装在你的电脑上,是不是就像给电脑穿上了时尚的新衣?想象你可以在电脑上直接玩手...
安卓12卡刷系统教程,体验全新... 你有没有发现,你的安卓手机最近有点儿不给力了?运行速度慢得像蜗牛,是不是也想给它来个“换血大法”,让...
安卓系统无法打开swf文件,安... 最近是不是发现你的安卓手机有点儿不给力?打开SWF文件时,是不是总是出现“无法打开”的尴尬局面?别急...
鸿蒙系统依赖于安卓系统吗,独立... 你有没有想过,我们手机里的那个鸿蒙系统,它是不是真的完全独立于安卓系统呢?这个问题,估计不少手机控都...
适合安卓系统的图片软件,精选图... 手机里堆满了各种美美的照片,是不是觉得找起来有点头疼呢?别急,今天就来给你安利几款超级适合安卓系统的...
阴阳师安卓系统典藏,探寻阴阳师... 亲爱的阴阳师们,你是否在安卓系统上玩得如痴如醉,对那些精美的典藏式神们垂涎欲滴?今天,就让我带你深入...
安卓系统有碎片化缺点,系统优化... 你知道吗?在手机江湖里,安卓系统可是个响当当的大侠。它那开放、自由的个性,让无数手机厂商和开发者都为...
安卓4系统手机微信,功能解析与... 你有没有发现,现在市面上还有很多安卓4系统的手机在使用呢?尤其是那些喜欢微信的朋友们,这款手机简直就...
鸿蒙系统是安卓的盗版,从安卓“... 你知道吗?最近在科技圈里,关于鸿蒙系统的讨论可是热闹非凡呢!有人说是安卓的盗版,有人则认为这是华为的...
安卓系统怎么剪辑音乐,轻松打造... 你是不是也和我一样,手机里存了超多好听的歌,但是有时候想给它们来个变身,变成一段专属的旋律呢?别急,...
怎么把安卓手机系统变为pc系统... 你有没有想过,把你的安卓手机变成一台PC呢?听起来是不是有点酷炫?想象你可以在手机上玩电脑游戏,或者...
手机怎么装安卓11系统,手机安... 你有没有想过,让你的手机也来个“青春焕发”,升级一下系统呢?没错,就是安卓11系统!这个新系统不仅带...
安卓系统如何拼网络,构建高效连... 你有没有想过,你的安卓手机是怎么和网络“谈恋爱”的呢?没错,就是拼网络!今天,就让我带你一探究竟,看...
安卓系统怎么看小说,轻松畅享电... 你有没有发现,手机里装了那么多应用,最离不开的竟然是那个小小的小说阅读器?没错,就是安卓系统上的小说...
车载安卓系统12v几安,12V... 你有没有想过,你的车载安卓系统升级到12V几安,竟然能带来如此翻天覆地的变化?没错,今天咱们就来聊聊...