Spark读取JDBC调优
创始人
2024-05-31 01:03:51
0

Spark读取JDBC调优,如何调参

  • 一、场景构建
  • 二、参数设置
    • 1.灵活运用分区列

实际问题:工作中需要读取一个存放了三四年历史数据的pg数仓表(缺少主键id),需要将数据同步到阿里云 MC中,Spark在使用JDBC读取关系型数据库时,默认只开启一个task去执行,性能低下,因此需要通过设置一些参数来提高并发度。一定要充分理解参数的含义,否则可能会因为配置不当导致数据倾斜!

翻看了网络上好多相关介绍,都沾边。下边总结一下!

您是菜鸟就好好学习,您是大佬欢迎提出修改意见!

一、场景构建

以100行数据为例(实际307983条):

  • 创建表
CREATE TABLE IF NOT EXISTS test(good_id STRING ,title STRING ,sellcount BIGINT,salesamount Double
)COMMENT '测试表'
PARTITIONED BY (dt	STRING	COMMENT '分区字段'
);
  • 插入数据
insert into test partition (dt = '202001') 
values ('1001','卫衣',1,100.1),('1002','卫裤',2,101.2),('1003','拖鞋',3,10.3)...,('1100','帽子',100,19.23)

二、参数设置

配置文件示例:

jdbc: &jdbcoptions.url: "jdbc:postgresql://xxx.xxx.xxx.xxx:8000/postgres"options.user: "xxxxxx"options.password: "xxxxxx"options.driver: "org.postgresql.Driver"input:- moduleClass: "JDBC"<<: *jdbcoptions.dbtable: "SELECT *,cast(good_id as bigint)*1%6 mo FROM test.test where dt = '202001'"options.fetchsize: "100"options.partitionColumn: "mo" # 分区列,一般为自增id,下边解释下为啥用mooptions.numPartitions: "6" #分区数options.lowerBound: "0"options.mytime: "${yyyy}-${MM}-${dd}"options.upperBound: "6" # 该值设置为和分区列最大值差不多的值resultDF: "df"

提交spark配置

  spark-submit \--class xx.xxx.xxx.xxx \--master local[*] \--num-executors 6 \--executor-cores 1 \--executor-memory 2G \--driver-memory 4G \/root/test/xxx.jar \-p xxx/xxx.yaml -cyctime $cyctime
  • options.fetchsize:一次性读取的数据条数,按集群规模(例:64核128G)一次1000条;阿里云Spark集群链接不了华为云pg数仓,我开了一台独立机器(8核16G)一次100条

  • options.partitionColumn:分区列,必须是bigint类型;

  • options.numPartitions:设置分区数,最好和spark提交的executors数一致;上文中spark任务数为6,分区数也为6

  • options.lowerBound:分区开始值

  • options.upperBound:分区结束值;numPartitions、lowerBound、upperBound这三个必须同时设置,每个分区的数据量计算公式为:upperBound / numPartitions - lowerBound / numPartitions,任务运行时间看的是最长的那个任务,所以要尽可能保证每一个分区的数据量差不多

官方配置文档:
在这里插入图片描述

1.灵活运用分区列

有的小伙伴就该思考为啥不用自增id做分区列呢?

因为实际生产环境中,一是不需要,二是创建表忽略了自增id等等。

为啥要新做一列mo,而不直接将商品id转bigint用呢?

算是一个补救措施,新做一个数据列,在读取过程用mo做shuffle,mo是商品id强转为bigint后对6取膜,结果为0-5共6种可能,提高了shuffle的效率,计算分区的数据量:6 / 6 - 0 / 6 = 1;也就是说分区值为0,1,2,3,4,(大于5),对应6个任务,6个核心。

下面是运行shuffle结束后的截图,可以看到每一个task获取的数据量都比较均匀

没有数据倾斜
下面来看一个错误的案例:
在这里插入图片描述
上图配置就会导致数据倾斜
numPartitions=10,
lowerBound=0,
upperBound=100,
表的数据量是1000。
根据计算公式每个分区的数据量是100/10-0/10=10,分10个区,那么前9个分区数据量都是10,但最后一个分区数据量却达到了910,即数据倾斜了,所以upperBound-lowerBound要和表的分区字段最大值差不多

有啥需要优化的欢迎评论纠正

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...