Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
创始人
2024-05-31 22:33:55
0

Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting

摘要

交通流量的复杂性和长范围时空相关性是难点

经典现存的工作:

1.利用浅图神经网络(shallow graph convolution networks)和 时间提取模块去分别建模空间和时间依赖

2.STGCN,DCRNN通过结合GNN和RNN,分别获得空间表示和时间表示

缺点:
  1. 浅图卷积神经网络不能获取长范围空间相关性(太浅特征学习不全面),仅仅考虑了空间上的连接,并没 有考虑语义连接(时间和空间上的关联)

    2.分别考虑空间,时间——》模型效果不佳

  2. GNN连接两层时效果最好,过深会导致过平滑问题,太浅导致特征学习不全,获取长范围依赖较难。

提出STGODE模型

1.基于张量的ODE模型 --》可以构建更深的网络,有效利用时空特征

2.添加语义邻接矩阵(更全面的获取特征)和时间空洞卷积(TCN 扩大卷积核,增大感受野)–》获取长时间依赖

STGODE组件

使用几个相关组件,解决现存问题

1.构建两种邻接矩阵spatial adjacency matrix (空间邻接矩阵)and semantic adjacency matrix(语义邻接矩阵),可以实现空间特征,语义相似的获取,准确描述时空相关性。

2.残差连接解决过平滑,残差连接的离散层被看作ODE的离散化。

带有残差连接的GNN——》避免过平滑,加深网络深度——》获得更广泛的时空依赖

利用时空张量——》同时考虑了时空交互,模型表现能力更好

使用空洞卷积——》感受野增大——》提取大范围特征

介绍

1.Traffic flow forecasting attempts to predict the future traffic flow given historical traffic conditions and underlying road networks

通过历史数据来预测未来数据

2.the complex and long-range spatial-temporal dependencies in traffic networks.

3.GNN可以高效处理图结构数据,通过聚合邻接点来更新节点表示

4.本文贡献:张量形式的GNN连续表示,加深网路,改善获取长范围时空相关

​ 利用道路节点的空间邻域和语义邻域来综合考虑时空相关性

相关工作

GNN

1.GNN有效的邻接聚合方案

2.解决了非欧几里德图结构数据

缺点:为了获得长时空相关性——》加深网络——》造成过平滑

利用重启分布缓解过平滑为本文动机 (restart distribution)
残差结构可以被看做是离散的常微分方程,现在已经存在通过ODE将残差连接的GCN表达为连续的GCN工作。作者考虑将CGNN(continous graph neural network)应用于交通预测以处理GCN过平滑的问题并同时提取时空依赖

GCN为一种简单的ODE离散化,表示节点表示的连续动态,实现更深的网络。

参数定义

N个节点,A为邻接矩阵,大小为N*N

空间邻接矩阵为 Asp 语义邻接矩阵 Ase

图信号张量X,xit大小为1*F,节点i在t时刻的观测值,F作为一个观测向量的长度

Xt=(X1t,X2t,…XNt)大小为N*F,在t时刻所有点的交通情况

X=(X1,X2,…XT)大小为T*N *F,所有节点在所有时刻的交通量

正则化邻接矩阵
在这里插入图片描述

转换之后,可以进行特征值分解,值在【0,阿尔法】

通过ODESolver实现神经网络参数化

模型

网络构成:两个ODE层(由多个STGODE block组成),一个最大值池化层,一个输出层

STGODE block 由 TCN(时间空洞卷积)+ ODESolver + TCN

TCN由空洞卷积和残差连接组成

ODESolver隐藏状态由当前状态和初始状态

邻接矩阵

在这里插入图片描述

去除一些关系较远的点,简化计算

语义相关矩阵

DTW算法——》计算两个时间序列的相似性(相较于逐点相似性,对形状相似性更加敏感)

DTW(X,Y)=D(m,n)为X和Y的最终距离

在这里插入图片描述

在这里插入图片描述

基于张量的时空图ODE

在这里插入图片描述

A 正则化矩阵

U时间变换矩阵

W特征转变矩阵

H0 GNN的初始输入

在这里插入图片描述

离散的格式如上图所示,其参数过多计算量过大。

ODESolver 可以实现时空融合,扩展网络深度,简化计算。

时间卷积模块

在这里插入图片描述

利用了空洞卷积,对每一个特征进行提取,然后再利用残差网络增强卷积性能

STGODE层

TCN+STGODESolver+TCN

优势:对时空信息敏感,卷积结构速度更快,并行性更好(空间邻接,语义邻接并行计算)

​ 三明治法堆叠,扩展了获取复杂时空关系的能力

STGODE模块+最大值池化+两个MLP+Huber损失(对异常值的敏感性低于平方误差损失)

贡献:

我们利用基于张量的ODE框架来提取长距离时空相关性;

引入语义邻居来建立局部和全面的空间关系;

具有残差连接的时间扩张卷积网络有助于捕获长期时间相关性

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...