【论文笔记】Long Tail Learning via Logit Adjustment
创始人
2024-06-02 03:49:15
0

摘要

Our techniques revisit the classic idea of logit adjustment based on the label frequencies, either applied post-hoc to a trained model, or enforced in the loss during training. Such adjustment encorages a large relative margin between logits of rare versus dominant labels.
重温了基于标签频率的逻辑调整,并将这种logit adjustment应用在训练前还是还是训练中。这种调整是支持原始的logit和主类之间的相对边界。 available at: https://github.com/google-research/google-research/tree/master/logit_adjustment

引言

Owing to this paucity of samples, generalisation on such labels is challenging; moreover, naive learning on such data is susceptible to an undesirable bias towards dominant labels. This problem has been widely studied in the literature on learning under class imbalance and the related problem of cost-sensitive learning.

Recently, long-tail learning has received renewed interest in the context of neural networks. Two active strands of work involve post-hoc normalisation weights, and modification of the underlying loss to account for varying class penalties. However, weight normalisation crucially relies on the weight norms being smaller for rare classes; however, this assumption is sensitive to the choice of optimiser. On the other hand, loss modification sacrifices the consistency that underpins the softmax cross-entropy.

Conceptually, logit adjustment encourages a large relative margin between a pair of rare and dominant labels. logit adjustment is endowed with a clear statistical grounding: by construction, the optimal solution under such adjustment coincides with the Bayes-optimal solution for the balanced error, i.e., Fisher consistent for minimising the balanced error.

Limitations of existing approaches

有趣的发现

(1)limitations of weight normalisation
Kang et al. [2020] is motivated by the observation that the weight norm ||wy||2 tends to correlate with P. However, we now show this assumption is highly dependent on the choice of optimizer.
We optimise a ResNet-32 using both SGD with momentum and Adam optimisers. Figure 1 confirms that under SGD, ||wy||2 and the class priors P are correlated. However , with Adam, the norms are either anti-correlated or independent of the class priors. This marked difference may be understood in lightof recent study of the implicit bias of optimises.

(2) limitations of loss modification
current loss are not consistent in this sense, even for binary problems. Here , we consider that current loss consider the frequency of positive or negative, but not both simultaneously.
在这里插入图片描述

方法

在这里插入图片描述
把红框去掉那就是softmax Cross Entropy
在这里插入图片描述
其中,在这里插入图片描述

相关内容

热门资讯

安卓系统用的华为应用,探索智能... 你知道吗?在安卓系统里,华为的应用可是个宝库呢!它们不仅功能强大,而且使用起来超级方便。今天,就让我...
安卓变ios系统魅蓝 你知道吗?最近有个朋友突然告诉我,他要把自己的安卓手机换成iOS系统,而且还是魅蓝品牌的!这可真是让...
幻书启世录安卓系统,安卓世界中... 亲爱的读者们,你是否曾在某个夜晚,被一本神奇的书所吸引,仿佛它拥有着穿越时空的力量?今天,我要带你走...
电脑安装安卓系统进不去,安卓系... 电脑安装安卓系统后竟然进不去,这可真是让人头疼的问题啊!你是不是也遇到了这种情况,心里直呼“怎么办怎...
用键盘切换控制安卓系统,畅享安... 你有没有想过,用键盘来控制你的安卓手机?是的,你没听错,就是那个我们每天敲敲打打的小玩意儿——键盘。...
小米安卓镜像系统在哪,小米安卓... 你有没有想过,你的小米手机里有一个隐藏的宝藏——安卓镜像系统?没错,就是那个可以让你的手机瞬间变身成...
安卓手机下载排班系统,高效排班... 你有没有想过,每天忙碌的工作中,有没有什么好帮手能帮你轻松管理时间呢?今天,就让我来给你介绍一个超级...
桌面组件如何弄安卓系统,桌面组... 亲爱的桌面爱好者们,你是否曾梦想过将安卓系统搬到你的电脑桌面上?想象那些流畅的动画、丰富的应用,还有...
安卓13系统介绍视频,新功能与... 亲爱的读者们,你是否对安卓13系统充满好奇?想要一探究竟,却又苦于没有足够的时间去研究?别担心,今天...
车机安卓7.1系统,功能升级与... 你有没有发现,现在的车机系统越来越智能了?尤其是那些搭载了安卓7.1系统的车机,简直就像是个贴心的智...
安卓系统下如何读pdf,And... 你有没有遇到过这种情况:手机里存了一大堆PDF文件,可是怎么也找不到一个能顺畅阅读的工具?别急,今天...
安卓系统全国通用的吗,畅享智能... 你有没有想过,为什么你的手机里装的是安卓系统呢?安卓系统,这个名字听起来是不是有点神秘?今天,就让我...
假苹果手机8安卓系统,颠覆传统... 你有没有想过,如果苹果手机突然变成了安卓系统,会是怎样的景象呢?想象那熟悉的苹果外观,却运行着安卓的...
安卓12.0系统vivo有吗,... 你有没有听说最近安卓系统又升级啦?没错,就是那个让手机焕然一新的安卓12.0系统!那么,咱们国内的手...
核心芯片和安卓系统,探索核心芯... 你知道吗?在科技的世界里,有一对“黄金搭档”正悄悄改变着我们的生活。他们就是——核心芯片和安卓系统。...
如何调安卓系统屏幕颜色,安卓系... 亲爱的手机控们,你是否曾觉得安卓系统的屏幕颜色不够个性,或者是因为长时间盯着屏幕而感到眼睛疲劳?别担...
旧台式电脑安装安卓系统,轻松安... 你那台旧台式电脑是不是已经服役多年,性能逐渐力不从心,却又不忍心让它退役呢?别急,今天就来教你怎么给...
美国要求关闭安卓系统,科技霸权... 美国要求关闭安卓系统:一场技术革新还是政治博弈?在数字化时代,智能手机已经成为我们生活中不可或缺的一...
安卓系统日记本 你有没有发现,手机里的安卓系统日记本,简直就是记录生活点滴的宝藏库呢?想象每天忙碌的生活中,有没有那...
安卓手机广告最少的系统,探索安... 你有没有发现,用安卓手机的时候,广告总是无处不在,让人烦得要命?不过别急,今天我要给你揭秘一个秘密—...