深度学习笔记:深度学习CNN python程序实现
创始人
2024-06-02 22:58:34
0

加深网络

深度学习相对于一般的神经网络区别就在于使用多层隐藏层。在该例中我们构造一个基于CNN的深度学习网络,其训练完成后对于mnist数据集失败准确率可以超过99%

该网络隐藏层结构:
卷积层—ReLU—卷积层—ReLU—池化层—卷积层—ReLU—卷积层—ReLU—池化层—卷积层—ReLU—卷积层—ReLU—池化层—affine—ReLU—dropout—affine—dropout—softmax

先放上完整代码:

# coding: utf-8
import sys, os
sys.path.append("D:\AI learning source code")  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *class DeepConvNet:"""识别率为99%以上的高精度的ConvNet网络结构如下所示conv - relu - conv- relu - pool -conv - relu - conv- relu - pool -conv - relu - conv- relu - pool -affine - relu - dropout - affine - dropout - softmax"""def __init__(self, input_dim=(1, 28, 28),conv_param_1 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_2 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_3 = {'filter_num':32, 'filter_size':3, 'pad':1, 'stride':1},conv_param_4 = {'filter_num':32, 'filter_size':3, 'pad':2, 'stride':1},conv_param_5 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},conv_param_6 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},hidden_size=50, output_size=10):# 初始化权重===========# 各层的神经元平均与前一层的几个神经元有连接(TODO:自动计算)pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*4*4, hidden_size])wight_init_scales = np.sqrt(2.0 / pre_node_nums)  # 使用ReLU的情况下推荐的初始值self.params = {}pre_channel_num = input_dim[0]for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])pre_channel_num = conv_param['filter_num']self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size)self.params['b7'] = np.zeros(hidden_size)self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)self.params['b8'] = np.zeros(output_size)# 生成层===========self.layers = []self.layers.append(Convolution(self.params['W1'], self.params['b1'], conv_param_1['stride'], conv_param_1['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W2'], self.params['b2'], conv_param_2['stride'], conv_param_2['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W3'], self.params['b3'], conv_param_3['stride'], conv_param_3['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W4'], self.params['b4'],conv_param_4['stride'], conv_param_4['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W5'], self.params['b5'],conv_param_5['stride'], conv_param_5['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W6'], self.params['b6'],conv_param_6['stride'], conv_param_6['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Affine(self.params['W7'], self.params['b7']))self.layers.append(Relu())self.layers.append(Dropout(0.5))self.layers.append(Affine(self.params['W8'], self.params['b8']))self.layers.append(Dropout(0.5))self.last_layer = SoftmaxWithLoss()def predict(self, x, train_flg=False):for layer in self.layers:if isinstance(layer, Dropout):x = layer.forward(x, train_flg)else:x = layer.forward(x)return xdef loss(self, x, t):y = self.predict(x, train_flg=True)return self.last_layer.forward(y, t)def accuracy(self, x, t, batch_size=100):if t.ndim != 1 : t = np.argmax(t, axis=1)acc = 0.0for i in range(int(x.shape[0] / batch_size)):tx = x[i*batch_size:(i+1)*batch_size]tt = t[i*batch_size:(i+1)*batch_size]y = self.predict(tx, train_flg=False)y = np.argmax(y, axis=1)acc += np.sum(y == tt)return acc / x.shape[0]def gradient(self, x, t):# forwardself.loss(x, t)# backwarddout = 1dout = self.last_layer.backward(dout)tmp_layers = self.layers.copy()tmp_layers.reverse()for layer in tmp_layers:dout = layer.backward(dout)# 设定grads = {}for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):grads['W' + str(i+1)] = self.layers[layer_idx].dWgrads['b' + str(i+1)] = self.layers[layer_idx].dbreturn gradsdef save_params(self, file_name="params.pkl"):params = {}for key, val in self.params.items():params[key] = valwith open(file_name, 'wb') as f:pickle.dump(params, f)def load_params(self, file_name="params.pkl"):with open(file_name, 'rb') as f:params = pickle.load(f)for key, val in params.items():self.params[key] = valfor i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):self.layers[layer_idx].W = self.params['W' + str(i+1)]self.layers[layer_idx].b = self.params['b' + str(i+1)]

解析:

1

    def __init__(self, input_dim=(1, 28, 28),conv_param_1 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_2 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_3 = {'filter_num':32, 'filter_size':3, 'pad':1, 'stride':1},conv_param_4 = {'filter_num':32, 'filter_size':3, 'pad':2, 'stride':1},conv_param_5 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},conv_param_6 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},hidden_size=50, output_size=10):

这里我们确定了各个神经网络层的形状,卷积核形状均为3 X 3,步幅为1,填充在第4个卷积层为2,其他为1. 卷积核数量1,2层为16, 3,4层为32, 5,6层为64.最后隐藏层(全连接层)神经元个数50

2

pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*4*4, hidden_size])
wight_init_scales = np.sqrt(2.0 / pre_node_nums)  # 使用ReLU的情况下推荐的初始值

这里定义了神经网络各层的神经元个数,以及ReLU函数使用的He初始值的标准差

3

        self.params = {}pre_channel_num = input_dim[0]for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])pre_channel_num = conv_param['filter_num']self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size)self.params['b7'] = np.zeros(hidden_size)self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)self.params['b8'] = np.zeros(output_size)

这里我们遍历形状参数列表得到各层的形状,并对各层的值进行初始化。其中卷积核与ReLU权重初始值都使用了He初始值,偏置的初始值都为0

3

        # 生成层===========self.layers = []self.layers.append(Convolution(self.params['W1'], self.params['b1'], conv_param_1['stride'], conv_param_1['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W2'], self.params['b2'], conv_param_2['stride'], conv_param_2['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W3'], self.params['b3'], conv_param_3['stride'], conv_param_3['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W4'], self.params['b4'],conv_param_4['stride'], conv_param_4['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W5'], self.params['b5'],conv_param_5['stride'], conv_param_5['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W6'], self.params['b6'],conv_param_6['stride'], conv_param_6['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Affine(self.params['W7'], self.params['b7']))self.layers.append(Relu())self.layers.append(Dropout(0.5))self.layers.append(Affine(self.params['W8'], self.params['b8']))self.layers.append(Dropout(0.5))self.last_layer = SoftmaxWithLoss()

按照神经网络顺序搭建神经网络各层,保存为列表layers。

神经网络结构:
卷积层(16 X 3 X 3)—ReLU—卷积层(16 X 3 X 3)—ReLU—池化层(长2,宽2,步幅2)—卷积层(32 X 3 X 3)—ReLU—卷积层(32 X 3 X 3)—ReLU—池化层(长2,宽2,步幅2)—卷积层(64 X 3 X 3)—ReLU—卷积层(64 X 3 X 3)—ReLU—池化层(长2,宽2,步幅2)—affine—ReLU—dropout(dropout比率0.5)—affine—dropout(dropout比率0.5)—softmax

4

    def predict(self, x, train_flg=False):for layer in self.layers:if isinstance(layer, Dropout):x = layer.forward(x, train_flg)else:x = layer.forward(x)return x

利用神经网络进行预测,其中train_flg为True时代表神经网络处于训练模式,在Dropout层会随机删除神经元。如为False则代表神经网络在预测状态,启用全部神经元

5

    def accuracy(self, x, t, batch_size=100):if t.ndim != 1 : t = np.argmax(t, axis=1)acc = 0.0for i in range(int(x.shape[0] / batch_size)):tx = x[i*batch_size:(i+1)*batch_size]tt = t[i*batch_size:(i+1)*batch_size]y = self.predict(tx, train_flg=False)y = np.argmax(y, axis=1)acc += np.sum(y == tt)return acc / x.shape[0]

返回每一轮batch中预测准确率

    def gradient(self, x, t):# forwardself.loss(x, t)# backwarddout = 1dout = self.last_layer.backward(dout)tmp_layers = self.layers.copy()tmp_layers.reverse()for layer in tmp_layers:dout = layer.backward(dout)# 设定grads = {}for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):grads['W' + str(i+1)] = self.layers[layer_idx].dWgrads['b' + str(i+1)] = self.layers[layer_idx].dbreturn grads

使用反向传播梯度下降求网络梯度并返回得到的梯度值

训练程序

# coding: utf-8
import sys, os
sys.path.append("D:\AI learning source code")  # 为了导入父目录而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from deep_convnet import DeepConvNet
from common.trainer import Trainer(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)network = DeepConvNet()  
trainer = Trainer(network, x_train, t_train, x_test, t_test,epochs=20, mini_batch_size=100,optimizer='Adam', optimizer_param={'lr':0.001},evaluate_sample_num_per_epoch=1000)
trainer.train()# 保存参数
network.save_params("deep_convnet_params.pkl")
print("Saved Network Parameters!")

在训练程序中,我们调用DeepConvNet,使用Adam权重更新方法,0.001学习率对mnist数据集进行mini-batch训练。其中每一个batch个数为100,进行20个epoch

相关内容

热门资讯

电视安卓系统哪个品牌好,哪家品... 你有没有想过,家里的电视是不是该升级换代了呢?现在市面上电视品牌琳琅满目,各种操作系统也是让人眼花缭...
安卓会员管理系统怎么用,提升服... 你有没有想过,手机里那些你爱不释手的APP,背后其实有个强大的会员管理系统在默默支持呢?没错,就是那...
安卓系统软件使用技巧,解锁软件... 你有没有发现,用安卓手机的时候,总有一些小技巧能让你玩得更溜?别小看了这些小细节,它们可是能让你的手...
安卓系统提示音替换 你知道吗?手机里那个时不时响起的提示音,有时候真的能让人心情大好,有时候又让人抓狂不已。今天,就让我...
安卓开机不了系统更新 手机突然开不了机,系统更新还卡在那里,这可真是让人头疼的问题啊!你是不是也遇到了这种情况?别急,今天...
安卓系统中微信视频,安卓系统下... 你有没有发现,现在用手机聊天,视频通话简直成了标配!尤其是咱们安卓系统的小伙伴们,微信视频功能更是用...
安卓系统是服务器,服务器端的智... 你知道吗?在科技的世界里,安卓系统可是个超级明星呢!它不仅仅是个手机操作系统,竟然还能成为服务器的得...
pc电脑安卓系统下载软件,轻松... 你有没有想过,你的PC电脑上安装了安卓系统,是不是瞬间觉得世界都大不一样了呢?没错,就是那种“一机在...
电影院购票系统安卓,便捷观影新... 你有没有想过,在繁忙的生活中,一部好电影就像是一剂强心针,能瞬间让你放松心情?而我今天要和你分享的,...
安卓系统可以写程序? 你有没有想过,安卓系统竟然也能写程序呢?没错,你没听错!这个我们日常使用的智能手机操作系统,竟然有着...
安卓系统架构书籍推荐,权威书籍... 你有没有想过,想要深入了解安卓系统架构,却不知道从何下手?别急,今天我就要给你推荐几本超级实用的书籍...
安卓系统看到的炸弹,技术解析与... 安卓系统看到的炸弹——揭秘手机中的隐形威胁在数字化时代,智能手机已经成为我们生活中不可或缺的一部分。...
鸿蒙系统有安卓文件,畅享多平台... 你知道吗?最近在科技圈里,有个大新闻可是闹得沸沸扬扬的,那就是鸿蒙系统竟然有了安卓文件!是不是觉得有...
宝马安卓车机系统切换,驾驭未来... 你有没有发现,现在的汽车越来越智能了?尤其是那些豪华品牌,比如宝马,它们的内饰里那个大屏幕,简直就像...
p30退回安卓系统 你有没有听说最近P30的用户们都在忙活一件大事?没错,就是他们的手机要退回安卓系统啦!这可不是一个简...
oppoa57安卓原生系统,原... 你有没有发现,最近OPPO A57这款手机在安卓原生系统上的表现真是让人眼前一亮呢?今天,就让我带你...
安卓系统输入法联想,安卓系统输... 你有没有发现,手机上的输入法真的是个神奇的小助手呢?尤其是安卓系统的输入法,简直就是智能生活的点睛之...
怎么进入安卓刷机系统,安卓刷机... 亲爱的手机控们,你是否曾对安卓手机的刷机系统充满好奇?想要解锁手机潜能,体验全新的系统魅力?别急,今...
安卓系统程序有病毒 你知道吗?在这个数字化时代,手机已经成了我们生活中不可或缺的好伙伴。但是,你知道吗?即使是安卓系统,...
奥迪中控安卓系统下载,畅享智能... 你有没有发现,现在汽车的中控系统越来越智能了?尤其是奥迪这种豪华品牌,他们的中控系统简直就是科技与艺...