机器学习自学笔记——感知机
创始人
2024-06-02 23:50:41
0

感知机预备知识

神经元

​ 感知机算法最初是由科学家从脑细胞的神经凸起联想而来。如下图,我们拥有三个初始xxx值,x1,x2,x0x_1,x_2,x_0x1​,x2​,x0​。其中x0=1x_0=1x0​=1为一个初始的常量,专业上称作“偏置”。每个xxx的值都会乘上一个权重值www,再线性组合生成一个多项式,这个多项式经过一个分类函数fff生成yyy。这个分类函数的作用就是将类别转化成0,10,10,1或者−1,1-1,1−1,1。绿色和蓝色的圆就像是一个个神经元,中间连接www就像是神经元用来传递信号的凸起。

请添加图片描述

数据集可分性

​ 从直观上理解,数据集可分的概念就是一个数据集可以通过一个超平面将不同的类别的数据样本点完全分开。

请添加图片描述

如上图,黄色的线可以将黄色三角形和红色圆形完全分开,不会有黄色三角形在红色圆形的区域,也不会有红色圆形在黄色三角形区域。这样一个数据集就是可分的。

感知机模型

分类函数

​ 重新回到一开始那个图。假设现在我们有一些数据集XXX,有{x10,x20}\{x_{10},x_{20}\}{x10​,x20​}这两个特征值。我们还有个超平面y=w1x1+w2x2y=w_1x_1+w_2x_2y=w1​x1​+w2​x2​。现在我们将这两个特征值输入,会得到下式:
w1x10+w2x20+w0x0=w1x10+w2x20+w0=wTx0+w0w_1x_{10}+w_2x_{20}+w_0x_0=w_1x_{10}+w_2x_{20}+w_0=w^Tx_0+w_0 w1​x10​+w2​x20​+w0​x0​=w1​x10​+w2​x20​+w0​=wTx0​+w0​
​ 根据超平面的性质:如果数据点在超平面之上,则wTx0+w0>0w^Tx_0+w_0>0wTx0​+w0​>0,如果数据点在超平面之下,则wTx0+w0<0w^Tx_0+w_0<0wTx0​+w0​<0。

​ 根据书写习惯,我们将w0w_0w0​换成bbb,单纯换个符号,方便后面区分理解。

​ 但是,对于不同的样本点,其x1,x2x_1,x_2x1​,x2​值不相同,所计算出来的wTx+bw^Tx+bwTx+b肯定也不相同。那我们如何去区分这两个类别呢?

​ 最直观的一种想法就是,让不同的类别对应其特殊的一个常数,比如类别1对应的是0,类别2对应的是1。这就涉及到一个问题,就是要将之前wTx+bw^Tx+bwTx+b的值转化成0和1。而这一步就是fff的作用了。

​ fff称为激活函数,就是将wTx+bw^Tx+bwTx+b转化成0,1。激活函数有很多,我们这使用的是sign函数:
sign(x)={+1,x>0−1,x<0sign(x)=\begin{cases} +1,&x>0\\ -1,&x<0 \end{cases} sign(x)={+1,−1,​x>0x<0​
​ 在上面我们提到超平面的性质,如果点在超平面之上,那么wTx+b>0w^Tx+b>0wTx+b>0,此时正好对应sign函数中的+1,点在超平面之下同理。这也是为什么sign函数能达到分类的目的。于是我们得到感知机的分类函数:
yi=sign(wTx0+b)y_i=sign(w^Tx_0+b) yi​=sign(wTx0​+b)

损失函数

​ 在模型训练的过程中,仅仅有一个分类函数是远远不够的。我们需要有一个损失函数,用来不断优化分类函数中www的权重值。

​ 我们或许可以直接想到,误分类点个数可以作为损失函数的标准:误分类点数目越少,分类越准确。但是这有两个问题:

  • 第一个是即使拥有相同的误分类点数目,误分类点距离超平面远近不同,其分类效果也是不一样的。
  • 第二个是将误分类点个数作为损失函数难以进行优化。我们知道要减少误分类点的个数,但是具体怎么减少,函数里没有体现。

​ 上面两个问题我们可以通过如下方式进行解决:

​ 首先第一个问题,损失函数需要能够衡量误分类点距离超平面的远近距离。已知点到直线的距离公式为:
d=∣wTx0+b∣∣∣w∣∣d=\frac{|w^Tx_0+b|}{||w||} d=∣∣w∣∣∣wTx0​+b∣​
对于同一条直线,∣∣w∣∣||w||∣∣w∣∣是不会发生变化的,所以可以省去。此外我们可以考虑下误分类点的状况:

  • 当超平面上方的点误分类到下方时,所以wTx+b<0w^Tx+b<0wTx+b<0,但是实际上正确的分类yi=+1y_i=+1yi​=+1;
  • 当超平面下方的点误分类到上方时,所以wTx+b>0w^Tx+b>0wTx+b>0,但是实际上正确的分类yi=−1y_i=-1yi​=−1;

无论是哪一种情况,都满足yi(wTx+b)<0y_i(w^Tx+b)<0yi​(wTx+b)<0。所以如果我们使用−yi(wTx+b)-y_i(w^Tx+b)−yi​(wTx+b)作为损失函数就可以解决第一个问题,而第二个问题也可以顺便解决。由于要考虑到是多个误分类点,所以我们还要加上∑\sum∑。

这里之所以要填符号是因为我们希望损失函数越小,超平面分类越准确。

所以分类函数为:
L(wi,w0)=−∑xi∈Myi(wTx+b)L(w_i,w_0)=-\sum_{x_i∈M}y_i(w^Tx+b) L(wi​,w0​)=−xi​∈M∑​yi​(wTx+b)

参数更新

​ 有了损失函数之后,我们就可以通过梯度下降进行参数更新,不断优化使分离超平面分类更加准确。

​ 根据梯度下降算法,我们需要对损失函数求偏导:
∇wL(wiT,b)=−∑xi∈Myixi∇bL(wiT,b)=−∑xi∈Myi\nabla_wL(w^T_i,b)=-\sum_{x_i∈M}y_ix_i \\\nabla_bL(w^T_i,b)=-\sum_{x_i∈M}y_i ∇w​L(wiT​,b)=−xi​∈M∑​yi​xi​∇b​L(wiT​,b)=−xi​∈M∑​yi​
然后就可以进行参数更新了:
wT→wT+ηyixib→b+ηyiw^T\to w^T+\eta y_ix_i \\b\to b+\eta y_i wT→wT+ηyi​xi​b→b+ηyi​
其中η\etaη为学习率。

感知机算法的原始形式

所以我们得到了感知机算法:

  • 输入:训练集TTT,学习率η\etaη

  • 输出:wT,bw^T,bwT,b

感知机模型: f(x)=sign(wT∗x+b)f(x)=sign(w^T∗x+b)f(x)=sign(wT∗x+b)

步骤流程:

(1) 初始化 w0,b0w_0,b_0w0​,b0​。

(2) 在训练集中选取数据 (xi,yi)(x_i,y_i)(xi​,yi​)

(3) 若 yi(wT∗xi+b)≤0y_i(w^T∗x_i+b)≤0yi​(wT∗xi​+b)≤0 (误分类点),则进行参数更新:

wT→w+ηyixiw^T\to w+ηy_ix_iwT→w+ηyi​xi​

bT→b+ηyib^T\to b+ηy_ibT→b+ηyi​

(4) 转至(2),直到训练集没有误分类点。

对偶问题

上面我们提到,利用梯度下降进行参数更新:
wT→wT+ηyixib→b+ηyiw^T\to w^T+\eta y_ix_i \\b\to b+\eta y_i wT→wT+ηyi​xi​b→b+ηyi​
如果我们假设样本点(xi,yi)(x_i,y_i)(xi​,yi​)在更新过程中被使用了nin_ini​次,也就是进行了nin_ini​次迭代,所以我们可以得到wT和bw^T和bwT和b的表达式。
wT=∑i=1Nniηyixib=∑i=1Nniηyiw^T=\sum_{i=1}^N n_i\eta y_ix_i \\b=\sum_{i=1}^N n_i\eta y_i wT=i=1∑N​ni​ηyi​xi​b=i=1∑N​ni​ηyi​
将其代入到原始感知机模型当中,
f(x)=sign(wT∗x+b)=sign(∑i=1Nniηyixi⋅x+∑i=1Nniηyi)f(x)=sign(w^T∗x+b)=sign(\sum_{i=1}^N n_i\eta y_ix_i·x+\sum_{i=1}^N n_i\eta y_i) f(x)=sign(wT∗x+b)=sign(i=1∑N​ni​ηyi​xi​⋅x+i=1∑N​ni​ηyi​)
此时学习目标就是nin_ini​

感知机算法的对偶形式

  • 输入:训练集TTT,学习率η\etaη

  • 输出:nin_ini​

感知机模型: f(x)=sign(∑i=1Nniηyixi⋅x+∑i=1Nniηyi)f(x)=sign(\sum_{i=1}^N n_i\eta y_ix_i·x+\sum_{i=1}^N n_i\eta y_i)f(x)=sign(∑i=1N​ni​ηyi​xi​⋅x+∑i=1N​ni​ηyi​)

步骤流程:

(1) 初始化 $n_i $。

(2) 在训练集中选取数据 (xi,yi)(x_i,y_i)(xi​,yi​)

(3) 若 yi(∑i=1Nniηyixi⋅x+∑i=1Nniηyi)≤0y_i(\sum_{i=1}^N n_i\eta y_ix_i·x+\sum_{i=1}^N n_i\eta y_i)≤0yi​(∑i=1N​ni​ηyi​xi​⋅x+∑i=1N​ni​ηyi​)≤0 (误分类点),则进行参数更新:

ni→ni+1n_i\to n_i+1ni​→ni​+1

(4) 转至(2),直到训练集没有误分类点。

也有另外一种写法:

  • 输入:训练集TTT,学习率η\etaη

  • 输出:αi,b\alpha_i,bαi​,b(αi=niη\alpha_i=n_i\etaαi​=ni​η)

感知机模型: f(x)=sign(∑i=1Nαiyixi⋅x+b)f(x)=sign(\sum_{i=1}^N\alpha_i y_ix_i·x+b)f(x)=sign(∑i=1N​αi​yi​xi​⋅x+b)

步骤流程:

(1) 初始化 nin_ini​。

(2) 在训练集中选取数据 (xi,yi)(x_i,y_i)(xi​,yi​)

(3) 若 yi(∑i=1Nniηyixi⋅x+b)≤0y_i(\sum_{i=1}^N n_i\eta y_ix_i·x+b)≤0yi​(∑i=1N​ni​ηyi​xi​⋅x+b)≤0 (误分类点),则进行参数更新:

αi→αi+η\alpha_i\to \alpha_i+\etaαi​→αi​+η

b→b+ηyib\to b+\eta y_ib→b+ηyi​

(4) 转至(2),直到训练集没有误分类点。

相关内容

热门资讯

122.(leaflet篇)l... 听老人家说:多看美女会长寿 地图之家总目录(订阅之前建议先查看该博客) 文章末尾处提供保证可运行...
育碧GDC2018程序化大世界... 1.传统手动绘制森林的问题 采用手动绘制的方法的话,每次迭代地形都要手动再绘制森林。这...
育碧GDC2018程序化大世界... 1.传统手动绘制森林的问题 采用手动绘制的方法的话,每次迭代地形都要手动再绘制森林。这...
Vue使用pdf-lib为文件... 之前也写过两篇预览pdf的,但是没有加水印,这是链接:Vu...
PyQt5数据库开发1 4.1... 文章目录 前言 步骤/方法 1 使用windows身份登录 2 启用混合登录模式 3 允许远程连接服...
Android studio ... 解决 Android studio 出现“The emulator process for AVD ...
Linux基础命令大全(上) ♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维...
再谈解决“因为文件包含病毒或潜... 前面出了一篇博文专门来解决“因为文件包含病毒或潜在的垃圾软件”的问题,其中第二种方法有...
南京邮电大学通达学院2023c... 题目展示 一.问题描述 实验题目1 定义一个学生类,其中包括如下内容: (1)私有数据成员 ①年龄 ...
PageObject 六大原则 PageObject六大原则: 1.封装服务的方法 2.不要暴露页面的细节 3.通过r...
【Linux网络编程】01:S... Socket多进程 OVERVIEWSocket多进程1.Server2.Client3.bug&...
数据结构刷题(二十五):122... 1.122. 买卖股票的最佳时机 II思路:贪心。把利润分解为每天为单位的维度,然后收...
浏览器事件循环 事件循环 浏览器的进程模型 何为进程? 程序运行需要有它自己专属的内存空间࿰...
8个免费图片/照片压缩工具帮您... 继续查看一些最好的图像压缩工具,以提升用户体验和存储空间以及网站使用支持。 无数图像压...
计算机二级Python备考(2... 目录  一、选择题 1.在Python语言中: 2.知识点 二、基本操作题 1. j...
端电压 相电压 线电压 记得刚接触矢量控制的时候,拿到板子,就赶紧去测各种波形,结...
如何使用Python检测和识别... 车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计...
带环链表详解 目录 一、什么是环形链表 二、判断是否为环形链表 2.1 具体题目 2.2 具体思路 2.3 思路的...
【C语言进阶:刨根究底字符串函... 本节重点内容: 深入理解strcpy函数的使用学会strcpy函数的模拟实现⚡strc...
Django web开发(一)... 文章目录前端开发1.快速开发网站2.标签2.1 编码2.2 title2.3 标题2.4 div和s...