ChatGPT相关技术必读论文100篇(2.27日起,几乎每天更新)
创始人
2024-06-03 06:50:46
0

按上篇文章《ChatGPT技术原理解析:从RL之PPO算法、RLHF到GPT-N、instructGPT》的最后所述

为了写本ChatGPT笔记,过去两个月翻了大量中英文资料/paper(中间一度花了大量时间去深入RL),大部分时间读的更多是中文资料,2月最后几天读的更多是英文paper,正是2月底这最后几天对ChatGPT背后技术原理的研究才真正进入状态(后还组建了一个“ChatGPT之100篇论文阅读组”,我和10来位博士、业界大佬从23年2.27日起100天读完ChatGPT相关技术的100篇论文),当然 还在不断深入,由此而感慨: 

  1. 读的论文越多,你会发现大部分人对ChatGPT的技术解读都是不够准确或全面的,毕竟很多人没有那个工作需要或研究需要,去深入了解各种细节
  2. 因为100天100篇这个任务,让自己有史以来一篇一篇一行一行读100篇,​之前看的比较散 不系统 抠的也不细
    比如回顾“Attention is all you need”这篇后,对优化博客内的Transformer笔记便有了很多心得

总之,读的论文越多,博客内相关笔记的质量将飞速提升 自己的技术研究能力也能有巨大飞跃

且考虑到为避免上篇文章篇幅太长而影响完读率,故把这100论文的清单抽取出来独立成本文

  1. Attention Is All You Need,Transformer原始论文
  2. GPT:Improving Language Understanding by Generative Pre-Training
    GPT2:Language Models are Unsupervised Multitask Learners
  3. GPT3原始论文:Language Models are Few-Shot Learners
  4. ICL原始论文
  5. Evaluating Large Language Models Trained on Code,Codex原始论文
    预测当前序列的最后一个词时 可以选取概率最大的词(softmax最高的值),但没法全局最优且不具备多样性,当然 可以使用束搜索 一次性获取多个解
    论文中用的是核采样,预测的各个词根据概率从大到小排序,选取前些个概率加起来为95%的词
  6. CoT原始论文:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
    28 Jan 2022 · Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou
    也从侧面印证,instructGPT从22年1月份之前 就开始迭代了
  7. Training language models to follow instructions with human feedback
    InstructGPT原始论文

  8. RLHF原始论文
  9. PPO原始论文
  10. 《Finetuned Language Models Are Zero-Shot Learners》,2021年9月Google提出FLAN大模型,其基于Instruction Fine-Tuning
    FLAN is the instruction-tuned version of LaMDA-PT
  11. Scaling Instruction-Finetuned Language Models,Flan-T5(2022年10月)
    从三个方面改变指令微调,一是改变模型参数,提升到了540B,二是增加到了1836个微调任务,三是加上Chain of thought微调的数据
  12. LLaMA: Open and Efficient Foundation Language Models,2023年2月Meta发布了全新的650亿参数大语言模型LLaMA,开源,大部分任务的效果好于2020年的GPT-3
  13. Language Is Not All You Need: Aligning Perception with Language Models,微软23年3月1日发布的多模态大语言模型论文
  14. GLM: General Language Model Pretraining with Autoregressive Blank Infilling,国内唐杰团队的

  15. A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT:https://arxiv.org/pdf/2302.09419,预训练基础模型的演变史
  16. LaMDA: Language Models for Dialog Applications,Google在21年5月对外宣布内部正在研发对话模型LaMDA
  17. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
  18. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing,作者来自CMU的刘鹏飞,这是相关资源
  19. Multimodal Chain-of-Thought Reasoning in Language Models
    23年2月,亚马逊的研究者则在这篇论文里提出了基于多模态思维链技术改进语言模型复杂推理能力的思想
  20. Offsite-Tuning: Transfer Learning without Full Model
    对于许多的私有基础模型,数据所有者必须与模型所有者分享他们的数据以微调模型,这是非常昂贵的,并引起了隐私问题(双向的,一个怕泄露模型,一个怕泄露数据)
  21. Emergent Abilities of Large Language Models
    Google 22年8月份发的,探讨大语言模型的涌现能力

  22. Large Language Models are Zero-Shot Reasoners
    来自东京大学和谷歌的工作,关于预训练大型语言模型的推理能力的探究,“Let's think step by step”的梗即来源于此篇论文
  23. PaLM: Scaling Language Modeling with Pathways,这是翻译之一
    22年4月发布,是Google的Pathways架构或openAI GPT2/3提出的小样本学习的进一步扩展
  24. PaLM-E: An Embodied Multimodal Language Model,Google于23年3月6日发布的关于多模态LLM
  25. Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models,微软于23年3月8日推出visual ChatGPT(另,3.9日微软德国CTO说,将提供多模态能力的GPT4即将一周后发布)
    At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one round fixed inputs and outputs. 

    To this end, We build a system called {Visual ChatGPT}, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 
    1) sending and receiving not only languages but also images 
    2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 
    3) providing feedback and asking for corrected results. 

    We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback
  26. 《The Natural Language Decathlon:Multitask Learning as Question Answering》,GPT-1、GPT-2论文的引用文献,Salesforce发表的一篇文章,写出了多任务单模型的根本思想
  27. Deep Residual Learning for Image Recognition,ResNet论文,短短9页,Google学术被引现15万多
    这是李沐针对ResNet的解读,另 这是李沐针对一些paper的解读列表
  28. The Flan Collection: Designing Data and Methods for Effective Instruction Tuning

  29. AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
    Transformer杀入CV界
  30. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
    Swin Transformer V2: Scaling Up Capacity and Resolution
    第一篇的解读戳这,第二篇的解读戳这里
  31. Denoising Diffusion Probabilistic Models
    2020年提出Diffusion Models(所谓diffusion就是去噪点的意思)
  32. CLIP: Connecting Text and Images - OpenAI
    CLIP由OpenAI在2021年1月发布,超大规模模型预训练提取视觉特征,图片和文本之间的对比学习(简单粗暴理解就是发微博/朋友圈时,人喜欢发一段文字然后再配一张或几张图,CLIP便是学习这种对应关系)

    2021年10月,Accomplice发布的disco diffusion,便是第一个结合CLIP模型和diffusion模型的AI开源绘画工具,其内核便是采用的CLIP引导扩散模型(CLIP-Guided diffusion model)
  33. Hierarchical Text-Conditional Image Generation with CLIP Latents
    DALL.E 2论文2022年4月发布(至于第一代发布于2021年初),通过CLIP + Diffusion models,达到文本生成图像新高度
  34. High-Resolution Image Synthesis with Latent Diffusion Models

    2022年8月发布的Stable Diffusion基于Latent Diffusion Models,专门用于文图生成任务
    这些是相关解读:图解stable diffusion(翻译版之一)、这是另一解读,这里有篇AI绘画发展史的总结

    Stable Diffusion和之前的Diffusion扩散化模型相比, 重点是做了一件事, 那就是把模型的计算空间,从像素空间经过数学变换,在尽可能保留细节信息的情况下降维到一个称之为潜空间(Latent Space)的低维空间里,然后再进行繁重的模型训练和图像生成计算
  35. Aligning Text-to-Image Models using Human Feedback,这是解读之一
    ChatGPT的主要成功要归结于采用RLHF来精调LLM,近日谷歌AI团队将类似的思路用于文生图大模型:基于人类反馈(Human Feedback)来精调Stable Diffusion模型来提升生成效果
    目前的文生图模型虽然已经能够取得比较好的图像生成效果,但是很多时候往往难以生成与输入文本精确匹配的图像,特别是在组合图像生成方面。为此,谷歌最新的论文提出了基于人类反馈的三步精调方法来改善这个问题

  36. // 23年2.27日起,本榜单几乎每天更新中

相关内容

热门资讯

安卓系统金立手机,品质生活新选... 你有没有发现,最近安卓系统下的金立手机突然火了起来?没错,就是那个曾经陪伴我们走过无数时光的金立手机...
无安卓系统的电视,新型无系统电... 亲爱的读者们,你是否厌倦了那些充斥着安卓系统的电视?想要尝试一些新鲜玩意儿?那就跟我一起探索一下无安...
麒麟系统能刷安卓系统吗,轻松刷... 你有没有想过,你的麒麟手机能不能装上安卓系统呢?这可是个让人好奇不已的问题。现在,就让我来带你一探究...
手机公司安卓系统吗,手机公司引... 你有没有想过,为什么你的手机里装的是安卓系统而不是苹果的iOS呢?这背后可是有着不少故事和门道的哦!...
安卓系统 文件网络传输,安卓系... 你有没有想过,手机里的文件怎么才能轻松地传给朋友呢?今天,就让我来给你揭秘安卓系统中的文件网络传输技...
安卓手机系统怎样备份,安卓手机... 你有没有想过,如果你的安卓手机突然“罢工”了,里面的照片、联系人、应用和数据怎么办?别担心,今天就来...
安卓系统怎样分享app,安卓系... 你是不是也和我一样,手机里装了超多好用的APP,但是有时候想和朋友分享这些宝藏,却不知道怎么操作呢?...
sonicarekids安卓系... 最近是不是你也遇到了Sonicare Kids安卓系统打不开的烦恼?别急,让我来帮你一探究竟,找出解...
安卓刷mac系统教程,体验全新... 你有没有想过,让你的安卓手机也来个华丽变身,摇身一变成为一台Mac电脑呢?别惊讶,这可不是天方夜谭,...
安卓系统根目录删除,深度揭秘删... 你有没有遇到过这种情况:手机里的安卓系统突然出了点小状况,比如不小心点错了某个按钮,结果发现根目录里...
怎么在安卓系统装windows... 你是不是也和我一样,对安卓手机的强大性能爱不释手,但又时不时地想念Windows系统的熟悉界面和那些...
kindle安卓系统壁纸设置,... 亲爱的Kindle用户,你是否曾为你的Kindle设备挑选过一款心仪的壁纸呢?今天,就让我带你一起探...
一加降级安卓系统,回顾与展望 你有没有想过,你的手机系统升级后,竟然还能降级回旧版本?这听起来是不是有点像穿越时空的魔法?没错,今...
凤凰安卓电视系统安装,畅享智能... 亲爱的读者们,你是否也像我一样,对凤凰安卓电视系统安装充满了好奇?想象一台普通的电视,通过安装这个系...
如何更换安卓系统手机,安卓系统... 你有没有想过,你的安卓手机用久了,是不是有点儿卡顿了呢?别急,今天就来教你怎么给它换换“血”,让它焕...
国家粮油统计安卓系统,智能数据... 你有没有想过,每天我们吃的粮食,背后竟然有这么多的故事和数据呢?没错,今天就要带你走进国家粮油统计的...
台电双系统安卓更新,畅享双平台... 你知道吗?最近台电的双系统安卓更新可是引起了不小的轰动呢!作为一个紧跟科技潮流的数码爱好者,我可是迫...
安卓系统上打开caj,Andr... 你有没有遇到过这种情况:手里拿着一本看起来超级有料的电子书,打开一看,哎呀妈呀,竟然是CAJ格式!别...
装安卓手机系统教程,安卓手机系... 你有没有想过,让你的安卓手机也能装上Windows系统,体验一下不一样的操作界面呢?没错,今天就要来...
安卓系统不供应华为,安卓系统不... 你知道吗?最近有个大新闻在科技圈里炸开了锅,那就是安卓系统不再供应华为了!这可不仅仅是两个公司之间的...