Python 优先队列:heapq库的使用
创始人
2025-05-28 09:43:17
0

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

  • 简介
  • heapq 库的使用
    • heapify
    • heappush
    • heappop
    • heapreplace
    • heappushpop
    • merge
    • nlargest
    • nsmallest
  • 例题
    • Title
      • Time Limit
      • Memory Limit
      • Problem Description
      • Input
      • Output
      • Sample Input
      • Sample Onput
      • Note
      • Source
      • Solution


简介

heapq 库是 Python 标准库中的一部分,它提供了一些堆操作的函数,可以用来实现优先队列。

优先队列是一种特殊的队列,它的每个元素都有一个优先级,元素的出队顺序是按照优先级从高到低的顺序进行的。优先队列的实现有多种方式,其中最常用的是堆。

堆是一种特殊的树,有两种类型,分别是最大堆和最小堆。最大堆的每个节点的值都大于或等于其子节点的值,最小堆的每个节点的值都小于或等于其子节点的值。堆的根节点是堆中的最大值(最小堆的根节点是最小值)。

heapq 的大部分操作都是基于最小堆实现的,通过将元素取相反数,可以实现最大堆。


heapq 库的使用

heapq 库提供了 heapifyheappushheappopheapreplaceheappushpopmergenlargestnsmallest 等函数,用于堆的操作。

heapify

heapify 函数用于原地将列表转换为最小堆,时间复杂度为 O(n)O(n)O(n)。

函数原型如下:

heapq.heapify(x)

其中,x 是一个列表。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heappush

heappush 函数用于将元素插入到最小堆中,并保持堆的不变性,时间复杂度为 O(log⁡n)O(\log n)O(logn)。

函数原型如下:

heapq.heappush(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heappush(x, 2.5)
print(x)
# [0, 1, 2, 6, 2.5, 5, 4, 7, 8, 9, 3]

heappop

heappop 函数用于弹出最小堆的根节点,并保持堆的不变性,时间复杂度为 O(log⁡n)O(\log n)O(logn)。如果堆为空,则抛出 IndexError 异常。

函数原型如下:

heapq.heappop(heap)

其中,heap 是一个最小堆。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(heapq.heappop(x))
# 0
print(x)
# [1, 3, 2, 6, 9, 5, 4, 7, 8]

使用 heap[0] 可以访问最小堆的根节点,但是不会弹出它。

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(x[0])
# 0
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heapreplace

heapreplace 函数用于弹出最小堆的根节点,并将新元素插入到堆中,保持堆的大小和不变性,时间复杂度为 O(log⁡n)O(\log n)O(logn)。如果堆为空,则抛出 IndexError 异常。它比先调用 heappop 再调用 heappush 效率更高。

函数原型如下:

heapq.heapreplace(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heapreplace(x, -1)
print(x)
# [-1, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heappushpop

heappushpop 函数用于将元素插入到最小堆中,并弹出最小堆的根节点,保持堆的大小和不变性,时间复杂度为 O(log⁡n)O(\log n)O(logn)。如果堆为空,则抛出 IndexError 异常。它比先调用 heappush 再调用 heappop 效率更高。

函数原型如下:

heapq.heappushpop(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heappushpop(x, -1)
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

merge

merge 函数是一个基于堆的通用功能函数,用于合并多个有序的序列,返回一个新的有序的序列,时间复杂度为 O(nlog⁡k)O(n \log k)O(nlogk),其中 nnn 是所有序列的元素个数,kkk 是序列的个数。函数返回一个已排序值的迭代器,可以使用 list 函数将其转换为列表。

函数原型如下:

heapq.merge(*iterables, key=None, reverse=False)

其中,iterables 是多个有序的序列,key 是一个函数,用于从序列中提取比较的键,reverse 是一个布尔值,表示是否反转序列。

示例:

import heapq
x = [1, 3, 5, 7, 9]
y = [2, 4, 6, 8, 10]
z = heapq.merge(x, y)
print(list(z))
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

nlargest

nlargest 函数是一个基于堆的通用功能函数,用于返回最大的 nnn 个元素,时间复杂度为 O(nlog⁡k)O(n \log k)O(nlogk),其中 nnn 是序列的长度,kkk 是要返回的元素个数。如果 nnn 小于 kkk,则返回整个序列。

函数原型如下:

heapq.nlargest(n, iterable, key=None)

其中,n 是要返回的元素个数,iterable 是一个序列,key 是一个函数,用于从序列中提取比较的键。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
print(heapq.nlargest(3, x))
# [9, 8, 7]

nlargest 函数在 nnn 值较小时性能较好。对于较大的 nnn,使用 sorted(iterable, reverse=True)[:n] 性能更好。当 n=1n=1n=1 时,使用 max(iterable) 函数性能更好。

nsmallest

nsmallest 函数是一个基于堆的通用功能函数,用于返回最小的 nnn 个元素,时间复杂度为 O(nlog⁡k)O(n \log k)O(nlogk),其中 nnn 是序列的长度,kkk 是要返回的元素个数。如果 nnn 小于 kkk,则返回整个序列。

函数原型如下:

heapq.nsmallest(n, iterable, key=None)

其中,n 是要返回的元素个数,iterable 是一个序列,key 是一个函数,用于从序列中提取比较的键。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
print(heapq.nsmallest(3, x))
# [0, 1, 2]

nsmallest 函数在 nnn 值较小时性能较好。对于较大的 nnn,使用 sorted(iterable)[:n] 性能更好。当 n=1n=1n=1 时,使用 min(iterable) 函数性能更好。


例题

Title

CodeForces 1800 C2. Powering the Hero (hard version)

Time Limit

2 seconds

Memory Limit

256 megabytes

Problem Description

This is a hard version of the problem. It differs from the easy one only by constraints on nnn and ttt.

There is a deck of nnn cards, each of which is characterized by its power. There are two types of cards:

You can do the following with the deck:

Your task is to use such actions to gather an army with the maximum possible total power.

Input

The first line of input data contains single integer ttt (1≤t≤1041 \le t \le 10^41≤t≤104) — the number of test cases in the test.

The first line of each test case contains one integer nnn (1≤n≤2⋅1051 \le n \le 2 \cdot 10^51≤n≤2⋅105) — the number of cards in the deck.

The second line of each test case contains nnn integers s1,s2,…,sns_1, s_2, \dots, s_ns1​,s2​,…,sn​ (0≤si≤1090 \le s_i \le 10^90≤si​≤109) — card powers in top-down order.

It is guaranteed that the sum of nnn over all test cases does not exceed 2⋅1052 \cdot 10^52⋅105.

Output

Output ttt numbers, each of which is the answer to the corresponding test case — the maximum possible total power of the army that can be achieved.

Sample Input

5
5
3 3 3 0 0
6
0 3 3 0 0 3
7
1 2 3 0 4 5 0
7
1 2 5 0 4 3 0
5
3 1 0 0 4

Sample Onput

6
6
8
9
4

Note

In the first sample, you can take bonuses 111 and 222. Both hero cards will receive 333 power. If you take all the bonuses, one of them will remain unused.

In the second sample, the hero’s card on top of the deck cannot be powered up, and the rest can be powered up with 222 and 333 bonuses and get 666 total power.

In the fourth sample, you can take bonuses 111, 222, 333, 555 and skip the bonus 666, then the hero 444 will be enhanced with a bonus 333 by 555, and the hero 777 with a bonus 555 by 444. 4+5=94+5=94+5=9.

Source

CodeForces 1800 C2. Powering the Hero (hard version)

Solution

每张英雄牌的最大力量为该英雄牌之前出现的未被使用最大奖励牌的力量。对于具体是哪张英雄牌使用了哪张奖励牌,我们是不关心的,只需要统计他们最大力量即可。

import heapqfor _ in range(int(input())):n = int(input())s = map(int, input().split())h = []ans = 0for i in s:if i == 0 and h:ans -= heapq.heappop(h)else:heapq.heappush(h, -i)print(ans)

相关内容

热门资讯

安卓子系统windows11,... 你知道吗?最近科技圈可是炸开了锅,因为安卓子系统在Windows 11上的兼容性成了大家热议的话题。...
电脑里怎么下载安卓系统,电脑端... 你有没有想过,你的电脑里也能装上安卓系统呢?没错,就是那个让你手机不离手的安卓!今天,就让我来带你一...
索尼相机魔改安卓系统,魔改系统... 你知道吗?最近在摄影圈里掀起了一股热潮,那就是索尼相机魔改安卓系统。这可不是一般的改装,而是让这些专...
安卓系统哪家的最流畅,安卓系统... 你有没有想过,为什么你的手机有时候像蜗牛一样慢吞吞的,而别人的手机却能像风一样快?这背后,其实就是安...
安卓最新系统4.42,深度解析... 你有没有发现,你的安卓手机最近是不是有点儿不一样了?没错,就是那个一直在默默更新的安卓最新系统4.4...
android和安卓什么系统最... 你有没有想过,你的安卓手机到底是用的是什么系统呢?是不是有时候觉得手机卡顿,运行缓慢,其实跟这个系统...
平板装安卓xp系统好,探索复古... 你有没有想过,把安卓系统装到平板上,再配上XP系统,这会是怎样一番景象呢?想象一边享受着安卓的便捷,...
投影仪装安卓系统,开启智能投影... 你有没有想过,家里的老式投影仪也能焕发第二春呢?没错,就是那个曾经陪你熬夜看电影的“老伙计”,现在它...
安卓系统无线车载carplay... 你有没有想过,开车的时候也能享受到苹果设备的便利呢?没错,就是那个让你在日常生活中离不开的iOS系统...
谷歌安卓8系统包,系统包解析与... 你有没有发现,手机更新换代的速度简直就像坐上了火箭呢?这不,最近谷歌又发布了安卓8系统包,听说这个新...
微软平板下软件安卓系统,开启全... 你有没有想过,在微软平板上也能畅享安卓系统的乐趣呢?没错,这就是今天我要跟你分享的神奇故事。想象你手...
coloros是基于安卓系统吗... 你有没有想过,手机里的那个色彩斑斓的界面,背后其实有着一个有趣的故事呢?没错,我要说的就是Color...
安卓神盾系统应用市场,一站式智... 你有没有发现,手机里的安卓神盾系统应用市场最近可是火得一塌糊涂啊!这不,我就来给你好好扒一扒,看看这...
黑莓平板安卓系统升级,解锁无限... 亲爱的读者们,你是否还记得那个曾经风靡一时的黑莓手机?那个标志性的全键盘,那个独特的黑莓体验,如今它...
安卓文件系统采用华为,探索高效... 你知道吗?最近安卓系统在文件管理上可是有了大动作呢!华为这个科技巨头,竟然悄悄地给安卓文件系统来了个...
深度系统能用安卓app,探索智... 你知道吗?现在科技的发展真是让人惊叹不已!今天,我要给你揭秘一个超级酷炫的话题——深度系统能用安卓a...
安卓系统的分区类型,深度解析存... 你有没有发现,你的安卓手机里藏着不少秘密?没错,就是那些神秘的分区类型。今天,就让我带你一探究竟,揭...
安卓系统铠无法兑换,揭秘无法兑... 最近是不是有很多小伙伴在玩安卓系统的游戏,突然发现了一个让人头疼的问题——铠无法兑换!别急,今天就来...
汽车安卓系统崩溃怎么刷,一键刷... 亲爱的车主朋友们,你是否曾遇到过汽车安卓系统崩溃的尴尬时刻?手机系统崩溃还能重启,但汽车系统崩溃了,...
miui系统可以刷安卓p系统吗... 亲爱的手机控们,你是否对MIUI系统情有独钟,同时又对安卓P系统的新鲜功能垂涎欲滴?今天,就让我带你...