首届昇腾AI创新大赛,“照见”好学不倦的“后浪”
admin
2024-01-29 06:25:16
0

经过半年多的激烈角逐后,首届昇腾AI创新大赛正式收官。

作为面向AI开发者打造的顶级赛事,昇腾AI创新大赛分为两个赛道:一个是面向行业场景进行应用创新的应用赛道,意在推动人工智能的产业落地;另一个是基于昇思进行算法、前沿任务创新的昇思赛道,瞄准了人工智能的前沿课题。

在产业智能化的浪潮下,和AI相关的赛事早已不胜枚举,最大的意义莫过于吸引各行各业的开发者,并借助比赛来放大品牌影响力。1560个队伍参与的首届昇腾AI创新大赛,却让外界看到了另一种可能:AI创新大赛既是对前沿技术的创新、探索与实践,也是一个不断“掘金”的过程。

比如应用赛道涌现出了不少优秀的创业团队,在区域市场被验证的解决方案,有望在全国范围内推广复制。昇思赛道则印证了另一种可能:冲在AI最前沿的不只有著作等身的学术大牛,还有很多好学不倦的“后浪”。

01 “浙大学霸”与社区资深布道师
昇腾AI创新大赛昇思赛道最终评选出的金奖选手中,有一个年轻的新面孔——正在浙江大学控制科学与工程学院读研究生的项靖阳。

在许多人的认知里,“研一”阶段属于人生的“迷茫期”,白天按部就班地学习专业课程,然后在业余时间读几篇专业文献,目的是熟悉自己的课题方向。至于论文、比赛什么的,还不在当前计划的范围内。

项靖阳可以说是妥妥的“少数派”。

早在大二的时候,项靖阳就在学院老师的指导下进了实验室,跟着研究生师兄师姐做一些科研课题、参加一些开发者赛事。那时候“人工智能”的概念如火如荼,项靖阳和很多年轻人一样,对新事物有着无限兴趣,并在实验室师兄的带领下接触到了刚刚宣布开源的昇思MindSpore,做了自己的第一个算法模型。

大二以后的日子里,项靖阳把大部分业余时间花在了科研上。其他同学忙于人际交往、娱乐消遣、实习工作时,项靖阳的生活却是实验室、宿舍与食堂间的“三点一线”。按照他的话说:“科研更像是表面枯燥乏味,但内里的乐趣是无穷的。”其中的乐趣,似乎来自于项靖阳的自学能力,平时上课中有不理解的知识点,他会主动到B站和MOOC看学习视频,比如专业课中考试难度很大的《自动控制原理》。

这种源自内心深处的探索欲,让项靖阳有了一个新身份——昇思MindSpore社区里的资深布道师。

按照昇思MindSpore社区的官方介绍,“资深布道师”的门槛相当严格,至少发布过5篇昇思MindSpore相关原创优质技术文章,且平均阅读量不低于5000;至少在昇思MindSpore开源社区主导过1个特性级开发;至少举办过1场或参加过3场线上/线下昇思MindSpore技术分享;同时需要是社区特邀的行业资深人士。

据项靖阳同学回忆:“刚接触昇思MindSpore时还是一个AI新手,但在社区里遇到了很多师兄师姐,在他们的帮助下慢慢了解了AI框架。然后自己开始做模型和算子,在社区里回答别人的问题,有空的时候在知乎、CSDN等平台上写一些技术博客,一步一步成为了社区里的资深布道师。”

昇腾AI创新大赛的消息在昇思MindSpore社区公布后,项靖阳第一时间选择报名参赛,让他没想到的是:报名的时候还是一位忙毕设的大四学生,利用暑假的空隙做了自己感兴趣的三道赛题,等到昇腾AI创新大赛收官时,项靖阳已经是浙江大学控制科学与工程学院的研一学生,找到了“深度学习模型压缩”的研究方向。

02 超越论文精度,靠“硬实力”出圈
别人眼中的项靖阳,或许只是个“初出茅庐”的研一学生。可在昇思MindSpore社区里,项靖阳已然是一位精通深度学习模型“老鸟”。

似乎有必要重温下昇思赛道的赛制:主办方通过筛选热门论文、前沿创新任务设置了30道赛题,主要来自CVPR、ICCV、ACL、ICML、NIPS等AI顶会过去几年里的热门模型,参数选手可以选择一个或多个任务,基于鹏城“云脑2”环境进行挑战,提交算法达到指定精度或要求即可视为完成。

“艺高人胆大”的项靖阳挑战了三个任务。

第一个任务是“利用昇思MindSpore实现Swin Transformer V2图像分类网络”,来自于微软亚洲研究院在CVPR发表的论文《Scaling Up Capacity and Resolution》。原作者将Swin Transformer缩放到30亿个参数,使其能够使用高达1536×1536分辨率的图像进行训练,提高了大视觉模型的稳定性,降低了预训练和微调之间的分辨率差距,并让常规GPU训练大型视觉模型成为可能。

第二个任务是“利用昇思MindSpore实现conformer图像分类网络”,源于国科大在ICCV上发表的优秀论文,将Transformer和CNN进行融合并提出了全新的Conformer模型,可以在不显著增加计算量的前提下显著提升基网表征能力。

第三个任务是“利用昇思MindSpore实现Big Transfer图像分类网络”,Google于2020年在ECCV上发表的论文,作者重新审视了预训练+微调的范式,先在一个大规模标记数据集上进行预训练,然后对目标任务上的每个训练权重进行精调任务,最终减少了目标任务所需的数据量和优化时间。

项靖阳花了近一个月的时间对原论文进行学习,理解原作者的提出的方法,对三道赛题间的共性进行分析,总结出了一套利用昇思MindSpore进行模型迁移、论文复现、精度与性能调优的工作流程。

特别是在论文复现的过程中,项靖阳针对Ascend 910进行了混合精度配置、算子层面的模型性能调优等工作,针对昇思MindSpore整图设计的理念,花了很长时间对训练、推理的整体模板进行适配;遇到一些精度模型无法达标的情况,就参考其他论文和方法,并利用数据增强、正则化等方式进一步促进模型的训练和收敛流程。

最终Swin Transformer V2、Conformer和Big Transfer均入围前三名,达到了超越原论文精度的效果。

正是对科研的激情和热爱,项靖阳同学在内的年轻人彻底 “征服”了现场的评委们。鹏城实验室开源主管邓清毫不吝啬的评价道:“在昇思赛道与各个高校的同学的日常对接中,能感觉到这些选手是真正的热衷于人工智能科研的莘莘学子,深切地感受到了他们的能力,也很欣慰有这么多优秀的年轻学者开源开放的生态里努力、进步和学习。”

03 “学练训赛”的人才培养新路径
像项靖阳这样优秀的年轻人,在昇思MindSpore社区中还有很多,他们从“小白”到“高手”的成长曲线,无疑比赛事本身更值得探讨。

正如高盛在《全球人工智能产业布局》中的预测,2030年时中国的人工智能人才缺口将超过500万人。想要在不到10年时间里填补500万的人才缺口,强化本科教育和产学研联合人才培养,业已成为社会上下的共识。

昇腾AI创新大赛的另一初衷恰在于此。

简单回顾项靖阳同学的成长经历,可以清晰地划分为四个阶段:第一个阶段是学,在学校学习编程及AI相关的基础知识;第二个阶段是练,不管是跟着师兄做科研,还是在昇思MindSpore社区中做模型,都是练的过程;第三个阶段是训,譬如在昇思MindSpore社区中主导的特性级开发;第四个阶段是赛,典型的案例就是昇腾AI创新大赛,为项靖阳在内的同学提供了学为所用的舞台。

传统的产学研培养方案,往往集中在学和练两个环节,昇思MindSpore社区和昇腾参与的一系列赛事,打通了学、练、训、赛四个环节,跑出了AI人才培养新路径。尤为值得一提的是,昇腾AI创新大赛昇思赛道将近几年的优秀论文和前沿课题作为赛题,其实隐藏着“以赛促研”的初衷。

想要“复现论文”,首先要做的就是对论文的“精读”,理解原作者提出的方法,可能涉及数据预处理技术、神经网络架构、训练技巧和处理等内容;在实验的过程中,通常包含有关数据集、训练和评估的详细信息、模型在各种参数下的表现,甚至需要与其他论文中的最新方法进行比较,将论文中的参考文献通读一遍……

如果是时间比较久远的“经典论文”,或许可以找到不少教程,复制粘贴过来就可能跑通。近几年的新论文,意味着可以找到的参考资料并不多,想要将论文复现,既要读懂、吃透论文中的精髓,还要有强大的学习能力、自驱力和工程能力,这也是想要自己发表论文时的必备技能。

就像项靖阳同学的例子,参赛时选择的三个赛题都和图像分类相关,和他选择的研究方向有很大关系。目前项靖阳正在准备自己的论文,昇腾AI创新大赛的参赛经历,虽然只花了一个半月的时间,但与计算机视觉领域的前沿研究进行了一场“深度沟通”,进一步夯实了他的科研之路。

再来思考昇腾AI创新大赛的价值,所筹谋的远不止打造一场顶级赛事,还在帮助开发者推开一扇新的大门:通过学、练、训、赛一体化的赛制,吸引越来越多像靖阳这样的“后浪”接触AI、认识AI、拥抱AI,不断为中国的AI人才培养孕育“火种”。

04 写在最后
产业智能化浪潮的演进,需要源源不断的人才输入。

在这样的共识下,正有越来越的科技企业参与到AI人才培养中,产学研的人才机制越发完善与成熟。同时需要思考的是,人才的能力和视野,直接决定着智能化转型的深度和高度,左右着中国在全球智能化竞赛中的竞争力,为莘莘学子们提供一条走在最前沿的成长路径,不可谓不重要。

昇腾AI创新大赛独立设置昇思赛道,俨然洞察到了时代的新趋势,而“后浪”们的崛起已然印证了昇腾的前瞻性。

相关内容

热门资讯

【MySQL】锁 锁 文章目录锁全局锁表级锁表锁元数据锁(MDL)意向锁AUTO-INC锁...
【内网安全】 隧道搭建穿透上线... 文章目录内网穿透-Ngrok-入门-上线1、服务端配置:2、客户端连接服务端ÿ...
GCN的几种模型复现笔记 引言 本篇笔记紧接上文,主要是上一篇看写了快2w字,再去接入代码感觉有点...
数据分页展示逻辑 import java.util.Arrays;import java.util.List;impo...
Redis为什么选择单线程?R... 目录专栏导读一、Redis版本迭代二、Redis4.0之前为什么一直采用单线程?三、R...
【已解决】ERROR: Cou... 正确指令: pip install pyyaml
关于测试,我发现了哪些新大陆 关于测试 平常也只是听说过一些关于测试的术语,但并没有使用过测试工具。偶然看到编程老师...
Lock 接口解读 前置知识点Synchronized synchronized 是 Java 中的关键字,...
Win7 专业版安装中文包、汉... 参考资料:http://www.metsky.com/archives/350.htm...
3 ROS1通讯编程提高(1) 3 ROS1通讯编程提高3.1 使用VS Code编译ROS13.1.1 VS Code的安装和配置...
大模型未来趋势 大模型是人工智能领域的重要发展趋势之一,未来有着广阔的应用前景和发展空间。以下是大模型未来的趋势和展...
python实战应用讲解-【n... 目录 如何在Python中计算残余的平方和 方法1:使用其Base公式 方法2:使用statsmod...
学习u-boot 需要了解的m... 一、常用函数 1. origin 函数 origin 函数的返回值就是变量来源。使用格式如下...
常用python爬虫库介绍与简... 通用 urllib -网络库(stdlib)。 requests -网络库。 grab – 网络库&...
药品批准文号查询|药融云-中国... 药品批文是国家食品药品监督管理局(NMPA)对药品的审评和批准的证明文件...
【2023-03-22】SRS... 【2023-03-22】SRS推流搭配FFmpeg实现目标检测 说明: 外侧测试使用SRS播放器测...
有限元三角形单元的等效节点力 文章目录前言一、重新复习一下有限元三角形单元的理论1、三角形单元的形函数(Nÿ...
初级算法-哈希表 主要记录算法和数据结构学习笔记,新的一年更上一层楼! 初级算法-哈希表...
进程间通信【Linux】 1. 进程间通信 1.1 什么是进程间通信 在 Linux 系统中,进程间通信...
【Docker】P3 Dock... Docker数据卷、宿主机与挂载数据卷的概念及作用挂载宿主机配置数据卷挂载操作示例一个容器挂载多个目...