L1正则化与L2正则化
创始人
2024-06-01 03:09:44
0

1.1-范数,2-范数

  • 1-范数:||X||_1=|x|_1+|x|_2+...+|x|_n
  • 2-范数:||X||_2 = (|x|_1^2+|x|_2^2+...+|x|_n^2)^{1/2}2-范数就是通常意义下的距离

2.L1和L2正则化

我们所说的正则化,就是在原来的loss function的基础上,加上了一些正则化项或者称为模型复杂度惩罚项。现在我们还是以最熟悉的线性回顾为例子。

  • 优化目标:

min\frac{1}{N}\sum_{i=1}^{N}{(y_i-w^Tx_i)}^2

  • 加上L1正则项

min\frac{1}{N}\sum_{i=1}^{N}{(y_i-w^Tx_i)}^2+C||w||_1

  • 加上L2正则项

min\frac{1}{N}\sum_{i=1}^{N}{(y_i-w^Tx_i)}^2+C||w||_2^2

我们的目标时使损失越小越好。

那加了L1正则化和L2正则化之后,对目标函数的求解有什么作用呢?

3.L1和L2正则化作用

假设X为一个二维样本,那么要求解的参数w也是二维:

  • 原函数曲线等高线(同颜色曲线上,每一组w1,w2带入值都相同)
图1 目标函数等高线
  • 加入L1和L2正则化的函数图像
图2 加入L1和L2正则的等高线

从上面两幅图中我们可以看出:

  • 如果不加L1和L2正则化的时候,对于线性回归这种目标函数凸函数的话,我们最终的结果就是最里面的紫色的小圈圈等高线上的点。
  • 当加入L1正则化的时候,我们先画出|w1|+|w2|=F的图像,也就是一个菱形,这些曲线上的点算出来的1范数|w1|+|w2|都为F。那现在的目标不仅是原曲线算的值要小,即越来越接近中心的紫色圆圈,还要使得这个菱形越来越小(F越来越小)。那么还和原来一样的化,过中心紫色圆圈的那个菱形明显很大,因此我们要取到一个恰好的值。那么如何求值呢?
图3 带L1正则化的目标函数求解

3.1 为什么说菱形和等高线相切的时候损失最小?

以原目标函数的曲线来说,在同一条等高线上,以最外圈的红色等高线为例。我们可以看到,对于红色曲线上的每个点都可以做一个菱形,根据上图3可知,当这个菱形和某条等高线相切的时候,这个菱形最小。

证明:同一等高线上的点能够使得\frac{1}{N}\sum_{i=1}^{N}(y_i-w^Tx_i)^2值相同,但是在相切的时候C||w||小,即|w1|+|w2|小,所以能够使得\frac{1}{N}\sum_{i=1}^{N}(y_i-w^Tx_i)^2+C||w||_1更小。

那么加入L1范数得到的解,一定是某个菱形和某条原函数等高线的切点。

3.2为什么加入L1正则化的解更容易稀疏?

我们可以观察到,几乎对于很多原函数等高线,和某个菱形相交的时候容易相交在坐标轴上,即最终结果解的某个维度极其容易为0,比如上图最终解释w=(0,x),这也就是我们所说的L1更容易得到稀疏解(解向量中0比较多)的原因。

证明:假设只有一个参数为w,损失函数为L(w),分别加上L1正则项和L2正则项后有:

J_{L1}(w)=L(w)+\lambda|w|

J_{L2}(w)=L(w)+\lambda|w|^2

假设L(w)在0处的导数为d_0,即

\frac{\partial L(w)}{\partial w}| _{w=0}=d_0

则可以推导使用L1正则和L2正则时的导数。

引入L2正则项,在0处的导数

\frac{\partial J_{L2}(w)}{\partial w}| _{w=0}=d_0+2*\lambda*w=d_0

引入L1正则项,在0处的导数

\frac{\partial J_{L1}(w)}{\partial w}| _{w=0^-}=d_0-\lambda

\frac{\partial J_{L1}(w)}{\partial w}| _{w=0^+}=d_0+\lambda

可见,引入L2正则时,代价函数在0处的导数仍然时d0,无变化。

而引入L1正则后,代价函数在0处的导数有一个突变。从d0+λ到d0-λ,如果d0+λ和d0-λ异号,则会在0处会是一个极小值。因此,优化时,很可能优化到该极小值点上,即w=0处。

这里只解释了有一个参数的情况,如果有更多的参数,也是类似的。因此,用L1正则更容易产生稀疏解。

3.3 加入L2正则化的结果

当加入L2正则化的时候,分析和L1正则化是类似的,也就是说我们仅仅是从菱形变成了圆形而已,同样还是求原曲线和圆形的切点作为最终解。当然与L1范数比,我们这样求得L2范数得从图上来看,不容易交在坐标轴上,但是仍然比较靠近坐标轴。因为这也就是我们经常说得,L2范数能让解比较小(靠近0),但是比较平滑(不等于0)

综上所述,我们可以看见,加入正则化项,在最小化经验误差得情况下,可以让我们选择解更简单(趋向于0)的解

从Bayes角度来看,L1,L2正则相当于对模型参数引入先验分布

  • L1正则:模型参数服从拉普拉斯分布,对参数加入分布约束,大部分取值为0.

特征选择:稀疏性(权值稀疏)

鲁棒性:忽略异常点

  • L2正则:模型参数服从高斯分布,对参数加了分布约束,大部分取值很小。

解决过拟合

易优化和计算(权值平滑)

稳定性好

对异常点敏感:误差取平方后放大。

稳定性比较解释

L1存在ill condition(病态)问题:输入发生微小变化导致输出发生很大改变。

对L1的病态问题大概理解一下,如上图所示,用批数据训练,每次批数据都会有稍稍不同的误差曲线。L2针对这种变动,白点的移动不会太大,而L1的白点则可能跳到许多不同的地方没因为这些地方的总误差都是差不多的。侧面说明了L1解的不稳定性。

https://www.cnblogs.com/lyxLearningNotes/p/16143387.html

L1 与 L2 正则化 - 简书

相关内容

热门资讯

122.(leaflet篇)l... 听老人家说:多看美女会长寿 地图之家总目录(订阅之前建议先查看该博客) 文章末尾处提供保证可运行...
育碧GDC2018程序化大世界... 1.传统手动绘制森林的问题 采用手动绘制的方法的话,每次迭代地形都要手动再绘制森林。这...
育碧GDC2018程序化大世界... 1.传统手动绘制森林的问题 采用手动绘制的方法的话,每次迭代地形都要手动再绘制森林。这...
Vue使用pdf-lib为文件... 之前也写过两篇预览pdf的,但是没有加水印,这是链接:Vu...
PyQt5数据库开发1 4.1... 文章目录 前言 步骤/方法 1 使用windows身份登录 2 启用混合登录模式 3 允许远程连接服...
Android studio ... 解决 Android studio 出现“The emulator process for AVD ...
Linux基础命令大全(上) ♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维...
再谈解决“因为文件包含病毒或潜... 前面出了一篇博文专门来解决“因为文件包含病毒或潜在的垃圾软件”的问题,其中第二种方法有...
南京邮电大学通达学院2023c... 题目展示 一.问题描述 实验题目1 定义一个学生类,其中包括如下内容: (1)私有数据成员 ①年龄 ...
PageObject 六大原则 PageObject六大原则: 1.封装服务的方法 2.不要暴露页面的细节 3.通过r...
【Linux网络编程】01:S... Socket多进程 OVERVIEWSocket多进程1.Server2.Client3.bug&...
数据结构刷题(二十五):122... 1.122. 买卖股票的最佳时机 II思路:贪心。把利润分解为每天为单位的维度,然后收...
浏览器事件循环 事件循环 浏览器的进程模型 何为进程? 程序运行需要有它自己专属的内存空间࿰...
8个免费图片/照片压缩工具帮您... 继续查看一些最好的图像压缩工具,以提升用户体验和存储空间以及网站使用支持。 无数图像压...
计算机二级Python备考(2... 目录  一、选择题 1.在Python语言中: 2.知识点 二、基本操作题 1. j...
端电压 相电压 线电压 记得刚接触矢量控制的时候,拿到板子,就赶紧去测各种波形,结...
如何使用Python检测和识别... 车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计...
带环链表详解 目录 一、什么是环形链表 二、判断是否为环形链表 2.1 具体题目 2.2 具体思路 2.3 思路的...
【C语言进阶:刨根究底字符串函... 本节重点内容: 深入理解strcpy函数的使用学会strcpy函数的模拟实现⚡strc...
Django web开发(一)... 文章目录前端开发1.快速开发网站2.标签2.1 编码2.2 title2.3 标题2.4 div和s...